
Pololu DRV8835 Dual Motor Driver Shield for Arduino

Pololu DRV8835 Dual Motor Driver Shield for Arduino,
bottom view with dimensions.

Overview
This motor driver shield and its corresponding Arduino library make it easy to control a pair of
bidirectional, brushed DC motors with an Arduino or Arduino clone. The board features Texas
Instruments’ DRV8835 dual H-bridge motor driver IC, which allows it to operate from 1.5 V to 11 V
and makes it particularly well suited for driving small, low-voltage motors. The shield can deliver a
continuous 1.2 A per channel and tolerate peak currents up to 1.5 A per channel for a few seconds,
and the channels can be optionally configured to run in parallel to deliver twice the current to a
single motor. The shield ships fully populated with its SMD components, including the DRV8835
driver and a FET for reverse battery protection; header pins for interfacing with an Arduino and
terminal blocks for connecting motors and power are included but are not soldered in (see the
Assembly with included hardware section below).

The shield uses digital pins 7, 8, 9, and 10 for its control lines, though the control pin mappings can
be customized if the defaults are not convenient. It should be compatible with any board that has a
standard Arduino pin arrangement and the ability to generate PWM signals on pins 9 and 10, such
as an Arduino Uno, Leonardo, Due, or Mega 2560.

This shield is intended to provide a low-cost, basic motor driver option for Arduinos, so it is much
smaller than typical Arduino shields and does not include pass-through, stackable headers. For
higher-power drivers with more configuration options, see our larger MC33926 and VNH5019
motor driver shields.

For a higher-voltage alternative to this shield, please consider the A4990 dual motor driver shield.
We also have a similar DRV8835 motor driver kit for the Raspberry Pi Model B+, as well as a



smaller DRV8835 carrier (and an even smaller single-channel DRV8838 carrier) for those using a
different controller or with tighter space constraints.

Although the DRV8835 itself works with a minimum motor supply voltage of 0 V, this
shield’s reverse-protection circuit limits the minimum to 1.5 V. If a lower motor supply
voltage is required, please consider using our DRV8835 carrier with motor power
supplied through the VMM pin.

Pololu DRV8835 Dual Motor Driver Shield for
Arduino, top and bottom sides.

Features
Dual-H-bridge motor driver: can drive two DC motors or one bipolar stepper motor

Motor supply voltage: 1.5 V to 11 V

Logic supply voltage 2 V to 7 V

Output current: 1.2 A continuous (1.5 A peak) per motor

Motor outputs can be paralleled to deliver 2.4 A continuous (3 A peak) to a single
motor

PWM operation up to 250 kHz (ultrasonic frequencies allow for quieter motor
operation)

Two possible interface modes: PHASE/ENABLE (default – one pin for direction,
another for speed) or IN/IN (outputs mostly mirror inputs)

Shield can optionally power the Arduino base directly when motor supply voltage is
suitable

Arduino library makes it easy to get started using this board as a motor driver shield

Arduino pin mappings can be customized if the default mappings are not convenient

Reverse-voltage protection on motor power supply

Under-voltage lockout and protection against over-current and over-temperature

Assembly with included hardware
Before the shield can be plugged into your Arduino, header pins must be mounted to the bottom of
the board (the side without any components or text) by soldering them into the appropriate holes.
The shield ships with a 15-pin 0.1″ straight breakaway male header strip that can be broken into
smaller pieces and used for this purpose. Four holes along the left side of the board (VCC, GND,
GND, and AVIN) and all five holes along the right side of the board (digital pins 6 – 10) should be
assembled with male header pins so that the shield will make the appropriate connections to the
Arduino. Once assembled, one easy way to ensure that you are plugging the shield properly into



the Arduino is to align the gap between pins 7 and 8 on the shield with the gap between pins 7 and
8 on the Arduino’s female headers.

If you want the option of powering the Arduino from the shield, you can solder two male header
pins to the lower-left corner of the board (in the silkscreen box next to the VOUT label). These pins
should point up, away from the Arduino. If you then place the included blue shorting block across
these pins (as shown in the above assembled picture), reverse-protected shield power will power
the Arduino through it’s VIN pin. See the Using the shield section below for more information on
this, including some important warnings.

Three 2-pin, 5 mm terminal blocks are included for making easy motor and power connections to
the shield once they have been slid together and soldered to the six large through-holes.
Alternatively, you can solder 0.1″ male header pins to the smaller through-holes above the terminal
block holes, or you can just solder wires directly to the shield.

Additional shorting blocks and header pins beyond what is included can be used to make some of
the more advanced optional modifications to the shield, such as remapping the control pins or
paralleling the outputs.

An Arduino is not included.

Using the shield
The shield plugs into Arduino digital pins 6, 7, 8, 9, and 10 on one side and Arduino VIN, GND,
GND, and 5V/VCC on the other. The upper-left corner of the shield partially blocks the Arduino’s
3.3V pin, but this region of the board (marked with a white silkscreen box) can be removed if
necessary to allow access. The shield also blocks Arduino digital pin 6, but it provides alternate
access points to this pin via the neighboring through-holes. The board does not use pin 6 for
anything.

In the shield’s default state, the motor driver shield and Arduino are powered separately, though
they share a common ground and the Arduino’s 5V rail serves as the shield’s logic supply. When
used this way, the Arduino must be powered via USB, its power jack, or its VIN pin, and the shield
must be supplied with 1.5 V to 11 V through its large VIN and GND pads. Attempting to power the
shield from the Arduino is not recommended as this could result in large currents flowing through
small traces. However, if the motor power supply is suitable, it is possible to power the Arduino
from the shield. This can be accomplished by placing a jumper between the shield pins in the
lower-left corner labeled VOUT and AVIN, which connects the reverse-protected motor supply
voltage to the Arduino’s VIN pin to power the Arduino. The Arduino’s power jack must remain
disconnected at all times in this configuration.



Warning: When powering the Arduino from the motor shield, you must never connect a
different power supply to the Arduino’s VIN pin or plug a power supply into the Arduino’s
power jack, as doing so will create a short between the shield’s power supply and the
Arduino’s power supply that could permanently damage both the Arduino and the motor
shield. In this case, it is also important that your shield power supply is an acceptable
voltage for your Arduino, so the full shield operating voltage range of 1.5 V to 11 V
probably will not be available. For example, the recommended operating voltage of the
Arduino Uno is 7 – 12 V.

By default, the board operates in PHASE/ENABLE mode, in which a PWM signal applied to the
ENABLE pin determines motor speed and the digital state of the PHASE pin determines direction
of motor rotation. Arduino pins 9 and 7 are used to control the speed and direction, respectively, of
motor 1, and pins 10 and 8 control the speed and direction of motor 2. The table below shows how
the inputs affect the outputs in this mode:

Drive/brake operation in default PHASE/ENABLE mode
xPHASE xENABLE MxA MxB operating mode

0 PWM PWM L forward/brake at speed PWM %

1 PWM L PWM reverse/brake at speed PWM %

X 0 L L
brake low (outputs shorted to
ground)

PHASE/ENABLE mode should be suitable for most applications.

Configuring the board for IN/IN mode
The operating mode of the driver is controlled by the MODE pin, which the shield connects to VCC
by default to select PHASE/ENABLE mode. To change the mode, locate the pair of 0.1″ through-
holes in the upper-left part of the board labeled “MODE” and use a knife to cut the trace that
connects the two on the bottom side of the PCB. Since the MODE pin has an internal pull-down
resistor, severing its connection to VCC is all it takes to switch the control interface to IN/IN, which
allows for slightly more advanced control options as described in the table below:

Drive/coast or drive/brake operation with MODE=0 (IN/IN)
xIN1 xIN2 MxA MxB operating mode

0 0 OPEN OPEN coast (outputs off)

PWM 0 PWM L forward/coast at speed PWM %

0 PWM L PWM reverse/coast at speed PWM %

1 PWM PWM L
forward/brake at speed 100% − PWM
%

PWM 1 L PWM reverse/brake at speed 100% − PWM
%

1 1 L L brake low (outputs shorted to ground)

Once the trace between the two pins has been cut, you can use a pair of header pins and a
shorting block to control the mode: with the shorting block on, the mode is PHASE/ENABLE; with it



off, the mode is IN/IN.

IN/IN mode is generally only useful if you only care about on/off control of the motors or if
you can supply PWM signals to all four inputs, which is not possible when using the
default pins on an Arduino Uno. If you want to be able to control the speed of the motors
when using this mode, you should either remap the control pins or select an Arduino that
can generate PWM signals with digital pins 7, 8, 9, and 10 (like the Arduino Mega 2560).

Configuring the board for single-channel mode (parallel outputs)
In order to use the two motor channels in parallel to control a single motor, it is important to ensure
that both channels will always receive the same control signals, so the reconfiguration process
begins with a modification to the control inputs. First, locate the 2×5 grouping of 0.1″ through-holes
along the right side of the board. These holes run parallel to pins 6-10 and the traces between
them on the underside of the PCB effectively link the Arduino pins to the DRV8835 control pins. If
you want to remap one of these control pins, you can cut the desired trace with a knife and then
run a wire from the inner hole to a new Arduino pin. The remapping for single-channel mode
requires you cut one PWM (9 or 10) and one DIR (6 or 7) trace. If you then solder a row of header
pins along the interior row of holes, you can safely connect both PWM lines together and both DIR
lines together using shorting blocks. In this configuration, the two uncut Arduino control lines
determine the behavior of both motor channels.

The last step is to connect the output channels together. An easy way to do this is to solder header
pins to the two pairs of holes labeled “A” and “B” near the motor outputs. Placing shorting blocks
across these pairs of pins connects M1A to M2A and M1B to M2B, which in turn means you can
get up to 3 A from the connection points for either channel (e.g. you can have your motor
connected just to the M1A and M1B terminal blocks rather than trying to find a way to connect it to
all four motor outputs).

Real-world power dissipation considerations
The DRV8835 datasheet recommends a maximum continuous current of 1.5 A per motor channel.
However, the chip by itself will overheat at lower currents. For example, in our tests at room
temperature with no forced air flow, the chip was able to deliver 1.5 A per channel for
approximately 15 seconds before the chip’s thermal protection kicked in and disabled the motor
outputs, while a continuous current of 1.2 A per channel was sustainable for many minutes without
triggering a thermal shutdown. The actual current you can deliver will depend on how well you can
keep the motor driver cool. The carrier’s printed circuit board is designed to draw heat out of the
motor driver chip, but performance can be improved by adding a heat sink. Our tests were
conducted at 100% duty cycle; PWMing the motor will introduce additional heating proportional to
the frequency.

This product can get hot enough to burn you long before the chip overheats. Take care
when handling this product and other components connected to it.

Schematic diagram



Pololu DRV8835 Dual Motor Driver Shield for Arduino schematic diagram.

This schematic is also available as a downloadable pdf (214k pdf).

Documentation on producer website.

http://www.pololu.com/product/2511

	Pololu DRV8835 Dual Motor Driver Shield for Arduino

