

PN: SS-HDC2010+CCS811#I2C SKU: ITBP-6006

s-Sense by itbrainpower.net

CC811 + HDC2010 I2C sensor breakout

Equipped with **CCS811** (CO2 and tVOC) and **HDC2010** ((temperature and humidity) sensors. This sensor bundle it is probably the best **air quality** sensor bundle available worldwide.

CCS811 + HDC2010 breakout features:

- *I2C interface**, 3.3-5V auto* [default, the <u>I2C reference voltage follows the power</u> in voltage],
- *I2C reference voltage* option via solder jumper [Eg.: power at *5V and I2C at 3.3V*; power and *I2C at 2.2V*],
- alternative sensor I2C addresses via solder jumpers,
- power in with voltages between 3.3-5V [default],
- big soldering pads on 2.54 mm [0.1"] pitch for standard row header / connector,
- very light and slim 13x27mm, around 2grams,
- compatible with Arduino [all 3.3V and 5V], xyz-mIoT shields, Raspberry PI [all versions] and other SBC / MCU Arduino [Beagle Bone, Teensy, ...]
- Arduino C, Raspberry PI [Python] software support.

CCS811 sensor features:

- equivalent CO2 range is 400ppm up to 29206ppm
- equivalent tVOC (Total Volatile Organic Compound) output range is from 0ppb up to 32768ppb
- ambient temperature range for operation -40 ~ +80C

CCS811 datasheet: itbrainpower.net/downloadables/CCS811_DS000459_5-00.pdf

HDC2010 sensor features:

- relative humidity range 0% 100%
- humidity accuracy +-2% (factory calibrated)
- temperature from -40C to +125C (functional) and -40C to +80C (operational)
- typical temperature accuracy +-0.2C (factory calibrated)
- embedded heating element to burn away condensation

HDC2010 datasheet: https://itbrainpower.net/downloadables/hdc2010.pdf

Designed and manufactured in EU by R&D Software Solutions.

https://itbrainpower.net/sensors/HDC2010+CCS811

CCS811** + HDC2010** breakout

carbon dioxide, total Volatile Organic Compounds, temperature and humidity - air quality sensor

PN: SS-HDC2010+CCS811#I2C SKU: ITBP-6006

* Additional signals are available on PCB bottom:

- CCS811 WAKE on PAD6, CCS811 RESET on PAD7 and CCS811 INTERRUPT on PAD8.
- HDC2010 INTERRUPT signal it is available on PAD9.

** digital sensors provided by AMS (CCS811) and Texas Instruments (HDC2010)

CCS811 + HDC2010 breakout :: INTERFACES, PADS and SOLDER JUMPERS

I2C and POWERING INTERFACE

In the left edge of the top PCB side, top to bottom:

- 1. Vin POWER IN 3.3V / 5V (default) *
- 2. 3V3 Vdd LDO output (default) / LDO bypass IN **
- 3. SDA I2C SDA [default, pulled up at Vin]***
- 4. SCL I2C SCL [default, pullup up at Vin]***

5. GND - POWER and I2C GROUND

* Default, the I2C reference voltage follow the Vin voltage. If your board (Arduino/other) it's 5V compliant, connect +5V to Vin. Similar, for 3.3V compliant board (RPI/Arduino) connect 3.3V source to Vin.

** 3.3V voltage it's available on \underline{Vdd} PAD, if Vin it's connected to 5V. Bypass LDO - see schema and read docs.

*** Default, the I2C reference voltage follows the Vin voltage! Read bellow about I2C reference voltage and *s1* solder jumper.

SOLDER JUMPERS

s1 : I2C reference [Vin or 3V3-bypass], default Vin *

s2 : CCS811 I2C address [0x5A/0x5B], default 0x5A *

- *s3* : HDC2010 I2C address [0x40/0x41], default 0x40 *
- * Read about s1, s2 and s3 functionality bellow.

SIGNALS INTERFACE and MARKING

In the left edge of the bottom PCB side, top to bottom:

- 6. CCS811 WAKE* input (active LOW)
- 7. CCS811 RESET* input (active LOW)
- 8. CCS811 INTERRUPT* output (w. pullup***)
- 9. HDC2010 INTERRUPT** output (w. pullup***)

nc. NOT CONNECTED

* In order to wake the CCS811 sensor, the WAKE signal must be shifted and kept at LOW level (connect directly to GND or controlled via MCU digital port).

- * Read about CCS811 WAKE, RESET and INTERRUPTS in CCS811 documentation!
- ** Read about HDC2010 INTERRUPTS in HDC2010 documentation!
- * & ** Taking a look at how-to posts and inside software examples may be quite helpful.

*** Default HIGH level.

Observe the sensor breakout marking on PCB board (here, CCS811 and HDC2010 sensors are marked as populated).

CCS811 + HDC2010 breakout :: Arduino / Raspberry PI basic interfacing

CCS811+HDC2010 breakout	Arduino 5V [Eg.: UNO]	Arduino 3.3V [Eg.: Zero]	RPI [B/B+/II/3/3+/Zero/Zero W]
Vin PAD*	5V	3.3V	PIN1 (3.3V)
Vdd PAD (3V3)*	-	-	-
SDA PAD	SDA	SDA	PIN3 (SDA)
SCL PAD	SCL	SCL	PIN5 (SCL)
GND PAD	GND	GND	PIN9 (GND)
6 - CCS WAKE **	D5 / GND	D5 / GND	PIN9 (GND)
7 - CCS RESET ***	-	-	
8 - CCS INT ***	-	-	+
9 - HDC2010 INT ****	-	-) -

* here, power in default mode (sensor & MCU power and I2C at same voltage!!). For alternate mode see solder jumper description bellow.

** PAD6 - CCS811 WAKE, when connected to GND, the CCS811 will avoid enter into SLEEP mode [sensor it's ACTIVE].

*** CCS811 RESET (input) and INT (output) signals are default HIGH level. Active state, for both signals, in LOW level. Read CCS811 docs.

**** HDC2010 INT (output) signal is default HIGH level and the behavior it's programable. If required, connect to one GPIO [set as INPUT], INTERRUPT capable. See examples and read HDC2010 docs.

Image 1 – sensor top side

CCS811 + HDC2010 breakout :: solder jumpers description; power scenarios

s1* - I2C reference voltage selector - shipped with circuit 1-2 closed and circuit 2-3 open (default mode).

In **default mode**, <u>the I2C reference voltage follows the voltage applied to Vin</u>! Default mode use cases:

- shield/MCU it's 5V compatible ==> connect Vin at 5V; the I2C reference it's 5V!
- SBC/shield/MCU it's 3.3V compatible ==>connect Vin at 3.3V; the I2C reference it's 3.3V!.

Alternate mode - <u>I2C reference voltage follows the Vdd voltage</u>! - modify *s1* as: 1-2 circuit open, 2-3 circuit closed [carefully interrupt/cut the circuit line between pads 1 and 2, and solder over pads 2 and 3].

Alternate mode scenarios:

- apply 3.6-7V to <u>Vin</u>. The I2C reference voltage it's set at 3.3V! Also, at <u>Vdd</u> pad (LDO output) 3.3V (up to 100mA) it's available for third part powering (anyway, try to keep the sunk current as low as possible, in order to avoid thermal errors).

- keep <u>Vin</u> not connected. Apply 2.8 or 3.3V to <u>Vdd</u> (the LDO it's bypassed). The I2C reference voltage it's set at voltage applied to <u>Vdd</u> pad!

s2 - **CCS811 I2C address** - default circuit open, CCS811 having 0x5A as I2C address. Solder over *s2* pads [circuit closed] in order to select the alternate I2C address [0x5B].

s3 - HDC2010 I2C address - default circuit open, HDC2010 having 0x40 as I2C address. Solder over *s3* pads [circuit closed] in order to select the alternate I2C address [0x41].

* Consult s-Sense block schema for more information. See projects/how to section.

CCS811 + HDC2010 breakout :: ARDUINO & RaspberryPI software

https://itbrainpower.net/downloads.php#s-Sense

CCS811 + HDC2010 breakout :: ARDUINO & RaspberryPI documentation

https://itbrainpower.net/downloads.php#s-Sense_documentation

CCS811 + HDC2010 breakout :: projects and how to

https://itbrainpower.net/projects

CCS811 + HDC2010 breakout :: part number / SKU

PN: SS-HDC2010+CCS811#I2C SKU: ITBP-6006