

DC COMPONENTS CO., LTD.

RECTIFIER SPECIALISTS

MBR3505 THRU MBR3510

TECHNICAL SPECIFICATIONS OF SINGLE-PHASE SILICON BRIDGE RECTIFIER

VOLTAGE RANGE - 50 to 1000 Volts

CURRENT - 35 Amperes

FEATURES

- * Plastic case with heatsink for Maximum Heat Dissipation
- * Diffused Junction
- * High current capability
- * Surge overload ratings 400 Amperes
- * Low forward voltage drop
- * High Reliability

MECHANICAL DATA

* Case: Molded plastic with heatsink

* Epoxy: UL 94V-0 rate flame retardant

* Terminals: Plated .25"(6.35mm) Faston lugs, Solderable per

MIL-STD-202E, Method 208 guaranteed

* Polarity: As marked* Mounting position: Any* Weight: 25 grams approx.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

		SYMBOL	MBR3505	MBR351	MBR352	MBR354	MBR356	MBR358	MBR3510	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	400	600	800	1000	Volts
Maximum RMS Bridge Input Voltage		VRMS	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Output Current at Tc = 55°C		lo	35							Amps
Peak Forward Surge Current 8.3 ms single half sine-wave		IFSM	400							Amps
superimposed on rated load (JEDEC Method)										
Maximum Forward Voltage Drop per element at 17.5A DC		VF	1.1						Volts	
Maximum DC Reverse Current at Rated	@TA = 25°C	1-	10							μAmps
DC Blocking Voltage per element	@Ta = 100°C	- IR	500							
I ² t Rating for Fusing (t<8.3ms)		I ² t	664						A ² Sec	
Typical Junction Capacitance (Note1)		Cı	300						pF	
Typical Thermal Resistance (Note 2)		RθJC	2.2						°C/W	
Operating and Storage Temperature Range		TJ,TSTG		-55 to +150						٥C

NOTES: 1.Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Thermal Resistance from Junction to Case per leg.

RATING AND CHARACTERISTIC CURVES (MBR3505 THRU MBR3510)

FIG. 1 - MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT PEAK FORWARD SURGE CURRENT, (A) 400 8.3ms Single Half Sine-Wav (JEDEC Mathod) 300 200 100 0 2 5 10 20 50 100 NUMBER OF CYCLES AT 60Hz

FIG. 2 - TYPICAL FORWARD CURRENT DERATING CURVE

STORY

OF TYPICAL FORWARD CURRENT DERATING CURVE

OF TYPICAL FORWARD CURRENT DERATING CURVE

STORY

OF TYPICAL FORWARD CURRENT DERATING CURVE

OF TYPICAL FORWARD CU

FIG. 3 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

