High Efficiency Thyristor

| $\mathrm{V}_{\text {RRM }}$ | $=1200 \mathrm{~V}$ |
| :--- | ---: | ---: |
| $\mathrm{I}_{\mathrm{TAV}}$ | $=50 \mathrm{~A}$ |
| $\mathrm{~V}_{\mathrm{T}}$ | $=1.27 \mathrm{~V}$ |

Single Thyristor

Part number

CLA50E1200TC

3

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying $50 / 60 \mathrm{~Hz}$
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-268AA (D3Pak)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

Terms and Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.
Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.
Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend
to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

Thyristo					ating		
Symbol	Definition	Conditions		min.	typ.	max.	Unit
$\mathrm{V}_{\text {RSMISSM }}$	max. non-repetitive reverse/forward blocking voltage		$\mathrm{T}_{\mathrm{v} \mathrm{J}}=25^{\circ} \mathrm{C}$			1300	V
$\mathrm{V}_{\text {RRMDRM }}$	max. repetitive reverse/forward blocking voltage		$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1200	V
$\mathrm{I}_{\mathrm{RID}}$	reverse current, drain current	$\begin{aligned} & V_{R / D}=1200 \mathrm{~V} \\ & V_{R / D}=1200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v} \nu}=125^{\circ} \mathrm{C} \end{aligned}$			50 4	$\begin{gathered} \mu \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
\bar{V}_{T}	forward voltage drop	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=50 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & 1.32 \\ & 1.60 \end{aligned}$	V
		$\begin{aligned} & \mathrm{I}_{T}=50 \mathrm{~A} \\ & \mathrm{I}_{T}=100 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C}$			$\begin{aligned} & 1.27 \\ & 1.65 \end{aligned}$	V
$\overline{I_{\text {TaV }}}$	average forward current	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$			50	A
$\mathrm{I}_{\text {T(RMS) }}$	RMS forward current	180° sine				79	A
$\begin{aligned} & \mathrm{V}_{\mathrm{T} 0} \\ & \mathbf{r}_{\mathrm{T}} \end{aligned}$	$\left.\begin{array}{l}\text { threshold voltage } \\ \text { slope resistance }\end{array}\right\}$ for power loss calculation only		$\mathrm{T}_{\mathrm{v},}=150^{\circ} \mathrm{C}$			$\begin{array}{r} 0.88 \\ 7.7 \end{array}$	V $\mathrm{m} \Omega$
$\mathbf{R}_{\text {thJc }}$	thermal resistance junction to case					0.25	K/W
$\mathbf{R}_{\text {thCH }}$	thermal resistance case to heatsink				0.15		K/W
$\mathbf{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			500	W
$\mathrm{I}_{\text {TSM }}$	max. forward surge current	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 650 \\ & 700 \end{aligned}$	A A
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}), \text { sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 555 \\ & 595 \end{aligned}$	A A
12t	value for fusing	$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V} J}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 2.12 \\ & 2.04 \end{aligned}$	$\begin{aligned} & k A^{2} s \\ & k A^{2} s \end{aligned}$
		$\begin{aligned} & \mathrm{t}=10 \mathrm{~ms} ;(50 \mathrm{~Hz}) \text {, sine } \\ & \mathrm{t}=8,3 \mathrm{~ms} ;(60 \mathrm{~Hz}) \text {, sine } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.54 \\ & 1.48 \end{aligned}$	$\begin{aligned} & k A^{2} S \\ & k A^{2} s \end{aligned}$
C	junction capacitance	$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V} \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{T}_{\mathrm{v} \nu}=25^{\circ} \mathrm{C}$		25		pF
P_{Gm}	max. gate power dissipation	$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s} \\ & \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$			10 5	W
$\mathrm{P}_{\mathrm{GAV}}$	average gate power dissipation					0.5	W
(di/dt) ${ }_{\text {cr }}$	critical rate of rise of current	$\begin{aligned} & \mathrm{T}_{\mathrm{V},}=150^{\circ} \mathrm{C} ; \mathrm{f}=50 \mathrm{~Hz} \quad \text { repetitive, } \mathrm{I}_{\mathrm{T}}=150 \mathrm{~A} \\ & \mathrm{t}_{\mathrm{P}}=200 \mu \mathrm{~s} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.3 \mathrm{~A} / \mathrm{Ls} ; \text { } \\ & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A} ; \mathrm{V}=2 / 3 \mathrm{~V}_{\text {DRM }} \quad \text { non-repet., } \mathrm{I}_{\mathrm{T}}=50 \mathrm{~A} \end{aligned}$				150	A/ $\mu \mathrm{s}$
						500	A/ $/ \mathrm{s}$
$\overline{(d v / d t)})_{\text {cr }}$	critical rate of rise of voltage	$\begin{aligned} & \mathrm{V}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ & \mathrm{R}_{\mathrm{GK}}=\infty ; \text { method } 1 \text { (linear voltage rise) } \end{aligned}$				1000	$\mathrm{V} / \mu \mathrm{s}$
$\overline{V_{\text {GT }}}$	gate trigger voltage	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			1.5	V
		$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V}$	$\mathrm{T}_{\mathrm{v},}=-40^{\circ} \mathrm{C}$			1.6	V
$\mathrm{I}_{\text {GT }}$	gate trigger current		$\mathrm{T}_{\mathrm{v} j}=25^{\circ} \mathrm{C}$			50	mA
			$\mathrm{T}_{\mathrm{v},}=-40^{\circ} \mathrm{C}$			80	mA
$\mathrm{V}_{\text {GD }}$	gate non-trigger voltage	$V_{D}=2 / 3 V_{\text {DRM }}$	$\mathrm{T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}$			0.2	V
I_{GD}	gate non-trigger current					3	mA
I_{L}	latching current	$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s} \\ & \mathrm{I}_{\mathrm{G}}=0.3 \mathrm{~A} ; \mathrm{di}_{\mathrm{G}} / \mathrm{dt}= \end{aligned}$	$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$			125	mA
${ }_{\text {I }}$	holding current	$\mathrm{V}_{\mathrm{D}}=6 \mathrm{~V} \quad \mathrm{R}_{\mathrm{GK}}=\infty$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$			100	mA
t_{gd}	gate controlled delay time	$\begin{aligned} & V_{D}=1 / 2 V_{\text {DRM }} \\ & I_{G}=0.3 A ; d i_{G} / d t= \end{aligned}$	$\mathrm{T}_{\mathrm{v} J}=25^{\circ} \mathrm{C}$			2	$\mu \mathrm{s}$
$\mathrm{t}_{\text {q }}$	turn-off time	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{I}_{\mathrm{T}}=50 \mathrm{~A} ; \mathrm{V}=2 / 3 \mathrm{~V}_{\text {DRM }} \mathrm{T}_{\mathrm{V} J}=125^{\circ} \mathrm{C} \\ & \mathrm{di} / \mathrm{dt}=10 \mathrm{~A} / \mu \mathrm{s} \mathrm{dv} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s} \mathrm{t}_{\mathrm{p}}=200 \mu \mathrm{~s} \end{aligned}$			200		$\mu \mathrm{s}$

Package	TO-268AA (D3Pak)	Ratings				
Symbol	Definition	Conditions	min.	typ.	max.	Unit
$\mathbf{I}_{\text {RMs }}$	RMS current	per terminal			70	A
$\mathbf{T}_{\text {vJ }}$	virtual junction temperature		-40		150	${ }^{\circ} \mathrm{C}$
$\mathbf{T}_{\text {op }}$	operation temperature	-40		125	${ }^{\circ} \mathrm{C}$	
$\mathbf{T}_{\text {stg }}$	storage temperature	-40		150	${ }^{\circ} \mathrm{C}$	
Weight			5		g	
\mathbf{F}_{c}	mounting force with clip	20		120	N	

Part description

C = Thyristor (SCR)
L = High Efficiency Thyristor
$A=$ (up to 1200 V)
$50=$ Current Rating [A]
$\mathrm{E}=$ Single Thyristor
$1200=$ Reverse Voltage [V]
$T C=$ TO-268AA (D3Pak) (2)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	CLA50E1200TC	CLA50E1200TC	Tube	30	502708

Similar Part	Package	Voltage class
CLA50E1200HB	TO-247AD (3)	1200

Equivalent Circuits for Simulation *on die level $\quad \mathrm{T}_{\mathrm{v} j}=150^{\circ} \mathrm{C}$

$\mathrm{I} \rightarrow \mathrm{~V}_{0}-\sqrt{\mathrm{R}_{0}}$		Thyristor	
$\mathrm{V}_{0 \text { max }}$	threshold voltage	0.88	\checkmark
$\mathbf{R}_{0 \text { max }}$	slope resistance *	5.2	$\mathrm{m} \Omega$

Outlines TO-268AA (D3Pak)

Dim.	Millimeter		Inches	
	min	max	min	max
A	4.90	5.10	0.193	0.201
A1	2.70	2.90	0.106	0.114
A2	0.02	0.25	0.001	0.100
b	1.15	1.45	0.045	0.057
b2	1.90	2.10	0.075	0.083
C	0.40	0.65	0.016	0.026
C2	1.45	1.60	0.057	0.063
D	13.80	14.00	0.543	0.551
D1	12.40	12.70	0.488	0.500
E	15.85	16.05	0.624	0.632
E1	13.30	13.60	0.524	0.535
e	5.45 BSC		0.215 BSC	
H	18.70	19.10	0.736	0.752
L	2.40	2.70	0.094	0.106
L1	1.20	1.40	0.047	0.055
L2	1.00	1.15	0.039	0.045
L3	0.25 BSC		0.100 BSC	
L4	3.80	4.10	0.150	0.161

RECOMMENDED MINIMUM FOOT PRINT FOR SMD

3

Thyristor

Fig. 1 Forward characteristics

Fig. 4 Gate voltage \& gate current

t [s]
Fig. 2 Surge overload current $\mathrm{I}_{\text {TSM }}$: crest value, t: duration

Fig. 5 Gate controlled delay time t_{gd}

Fig. $\left.3\right|^{2}$ t versus time ($1-10 \mathrm{~s}$)

Fig. 6 Max. forward current at case temperature

Fig. 7a Power dissipation versus direct output current Fig. 7b and ambient temperature

Fig. 7 Transient thermal impedance junction to case

