$V_{DRM} = 4500 V$

 $I_{TGQM} = 3000 A$

 $I_{TSM} = 24 \text{ kA}$

 $V_{T0} = 1.80 V$

 $r_T = 0.70 \text{ m}\Omega$

 $V_{DClin} = 3000 V$

Gate turn-off Thyristor

5SGF 30J4502

PRELIMINARY

Doc. No. 5SYA 1211-04 Aug. 2000

- · Patented free-floating silicon technology
- · Low on-state and switching losses
- Annular gate electrode
- Industry standard housing
- Cosmic radiation withstand rating

The 5SGF 30J4502 is a 85 mm buffered layer GTO with exceptionally low dynamic and static losses designed to retro-fit all former 3 kA GTOs of the same voltage. It offers optimal trade-off between on-state and switching losses and is encapsulated in an industry-standard press pack housing 108 mm wide and 26 mm thick.

Blocking

	· 9					
V_{DRM}	Repetitive peak off-state voltage		4500	V	$V_{GR} \ge 2V$	
V_{RRM}	Repetitive peak reverse voltage		17	V		
I _{DRM}	Repetitive peak off-state current	≤	100	mΑ	$V_D = V_{DRM}$ $V_{GR} \ge 2V$	
I _{RRM}	Repetitive peak reverse current	\leq	50	mΑ	$V_R = V_{RRM}$ $R_{GK} = \infty$	
V _{DClink}	Permanent DC voltage for 100 FIT failure rate		3000	V	$-40 \le T_j \le 125$ °C. Ambient cosmic radiation at sea level in open air.	

Mechanical data (see Fig. 19)

F _m	Mounting force	min.		28	kN
	Mounting force	max.		38	kN
Α	Acceleration:				
	Device unclamped			50	m/s ² m/s ²
	Device clamped			200	m/s ²
М	Weight			1.3	kg
Ds	Surface creepage distance		2	33	mm
Da	Air strike distance		2	15	mm

GTO Data

On-state

I_{TAVM}	Max. average on-state current	960 A	Half sine wave, T _C = 85 °C			
I _{TRMS}	Max. RMS on-state current	1510 A				
I _{TSM}	Max. peak non-repetitive	24 kA	$t_P = 10 \text{ ms} T_j = 125^{\circ}\text{C}$			
	surge current	40 kA	$t_P = 1 \text{ ms}$ After surge:			
l ² t	Limiting load integral	2.88·10 ⁶ A ² s	$t_P = 10 \text{ ms}$ $V_D = V_R = 0V$			
		0.80·10 ⁶ A ² s	t _P = 1 ms			
V _T	On-state voltage	3.90 V	I _T = 3000 A			
V _{T0}	Threshold voltage	1.80 V	I _T = 400 - 4000 A T _j = 125 °C			
r _T	Slope resistance	0.70 mΩ				
I _H	Holding current	100 A	T _j = 25 °C			

Gate

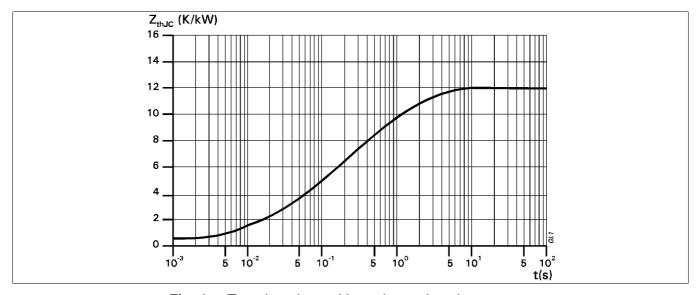
V_{GT}	Gate trigger voltage	1.2 V	V	D	= 24 V	T _j =	25 °C	
I _{GT}	Gate trigger current	2.5 A	F	RA	= 0.1Ω			
V_{GRM}	Repetitive peak reverse voltage	17 V						
I _{GRM}	Repetitive peak reverse current	20 m	A V	GR	= V _{GRM}			

Turn-on switching

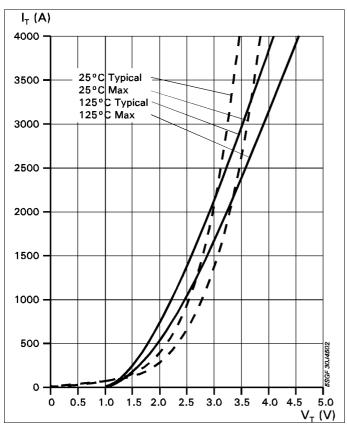
	diri on switching						
di/dt _{crit}	Max. rate of rise of on-state	500 A/μs	f = 200Hz	$I_T = 3000$	Α,	$T_j =$	125 °C
	current	1000 A/µs	f = 1Hz	$I_{GM} = 25$	A, di_G	/dt =	= 20 A/μs
t _d	Delay time	2.5 µs	V _D =	0.5 V _{DRM}	Tj	=	125 °C
t _r	Rise time	5.0 µs	I _T = 30	000 A	di/dt	=	300 A/μs
t _{on(min)}	Min. on-time	100 µs	I _{GM} =	25 A	di _G /dt	=	20 A/μs
E _{on}	Turn-on energy per pulse	2.50 Ws	C _S =	3 µF	R_s	=	5 Ω

Turn-off switching

1 41111 01	i Switching		
I_{TGQM}	Max controllable turn-off	3000 A	$V_{DM} = V_{DRM}$ $di_{GQ}/dt = 40 A/\mu s$
	current		C_S = 3 μF L_S \leq 0.2 μH
t _s	Storage time	25.0 µs	$V_D = \frac{1}{2} V_{DRM} V_{DM} = V_{DRM}$
t _f	Fall time	3.0 µs	T_j = 125 °C di_{GQ}/dt = 40 A/ μ s
t _{off(min)}	Min. off-time	100 µs	$I_{TGQ} = I_{TGQM}$
E _{off}	Turn-off energy per pulse	10.0 Ws	$C_S = 3 \mu F R_S = 5 \Omega$
I _{GQM}	Peak turn-off gate current	800 A	$L_{S} \leq 0.2 \ \mu H$

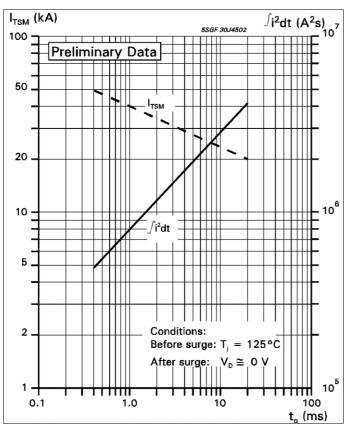

Thermal

T _j	Storage and operating	-40125°C	
	junction temperature range		
R _{thJC}	Thermal resistance	22 K/kW	Anode side cooled
	junction to case	27 K/kW	Cathode side cooled
		12 K/kW	Double side cooled
R _{thCH}	Thermal resistance case to	6 K/kW	Single side cooled
	heat sink	3 K/kW	Double side cooled


Analytical function for transient thermal impedance:

$$Z_{thJC}(t) = \sum_{i=1}^{4} R_i(1 - e^{-t/\tau_i})$$

i	1	2	3	4
R _I (K/kW)	5.4	4.5	1.7	0.4
τ _i (s)	1.2	0.17	0.01	0.001


Fig. 1 Transient thermal impedance, junction to case.

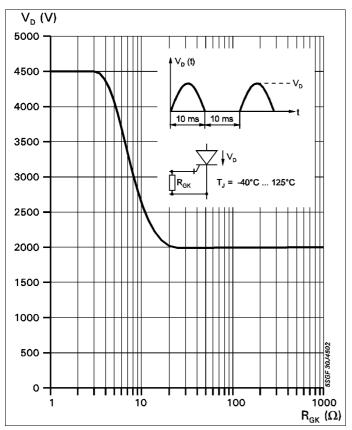
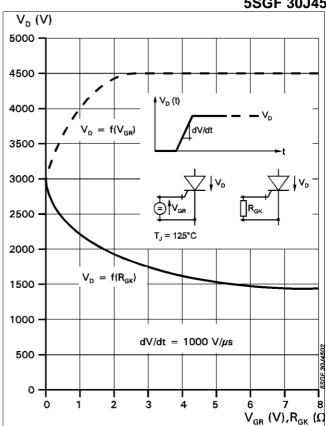

P_{AV} (kW) 4.50 4.00 3.50 DC 180° Л 3.00 180° sine 120° Л 60° Л 2.50 2.00 1.50 1.00 0.50 0.00 200 400 600 800 1000 1200 1400 1600 0

Fig. 2 On-state characteristics


Fig. 3 Average on-state power dissipation vs. average on-state current.

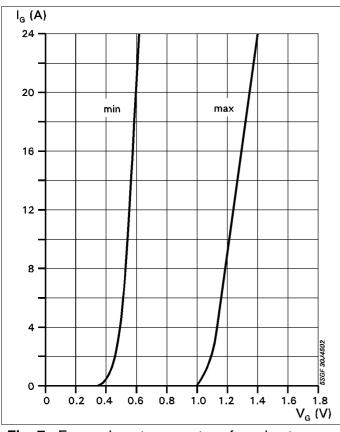
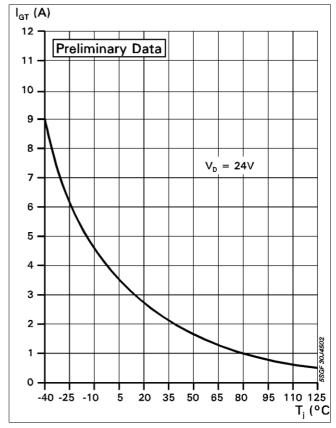
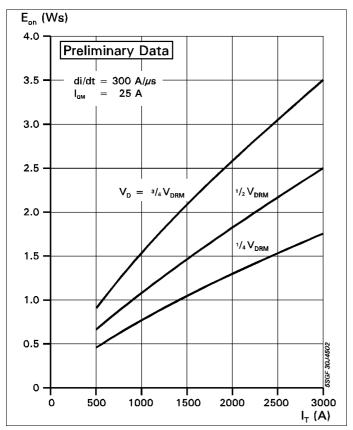
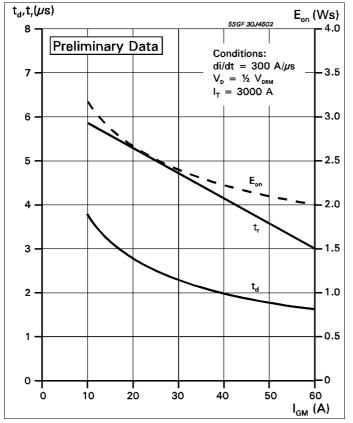

Fig. 4 Surge current and fusing integral vs. pulse width

Fig. 5 Forward blocking voltage vs. gate-cathode resistance.

Fig. 6 Static dv/dt capability: Forward blocking voltage vs. neg. gate voltage or gate cathode resistance.

Fig. 7 Forwarde gate current vs. forard gate voltage.

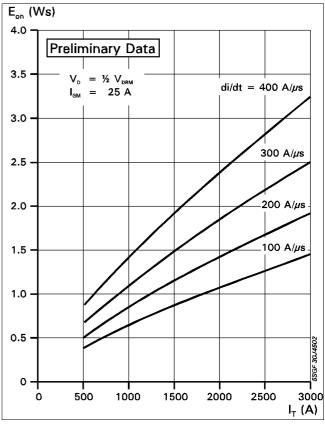

Fig. 8 Gate trigger current vs. junction temperature

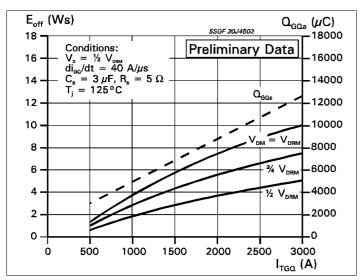
Fig. 9 Turn-on energy per pulse vs. on-state current and turn-on voltage.

Fig. 11 Turn-on energy per pulse vs. on-state current and turn-on voltage.

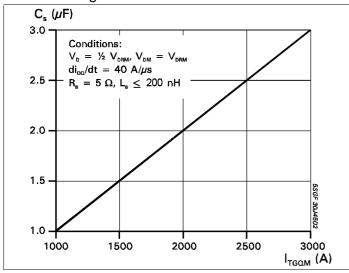
Fig. 10 Turn-on energy per pulse vs. on.-state current and current rise rate

Common Test conditions for figures 9, 10 and 11:

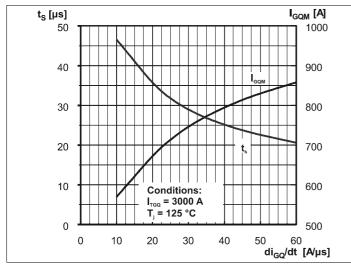
$$\begin{aligned} di_G/dt &= 20 \text{ A/}\mu\text{s} \\ C_S &= 3 \mu\text{F} \\ R_S &= 5 \Omega \\ Tj &= 125 \text{ °C} \end{aligned}$$

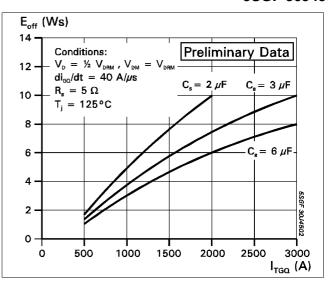

Definition of Turn-on energy:

$$Eon = \int_{0}^{20 \,\mu s} V_D \cdot I \tau dt \quad (t = 0, I_G = 0.1 \cdot I_{GM})$$


Common Test conditions for figures 12, 13 and 15:

Definition of Turn-off energy:


$$E_{off} = \int_{0}^{40 \,\mu s} V_D \cdot I_T dt \quad \text{(t = 0, I_T = 0.9 · I_{TGQ})}$$


Fig. 12 Turn-off energy per pulse vs. turn-off current and peak turn-off voltage. Extracted gate charge vs. turn-off current.

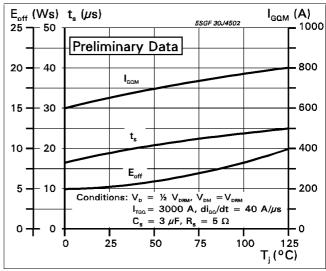

Fig. 14 Required snubber capacitor vs. max allowable turn-off current.

Fig. 16 Storage time and peak turn-off gate current vs. neg. gate current rise rate.

Fig. 13 Turn-off energy per pulse vs. turn-off current and snubber capacitance.

Fig. 15 Turn-off energy per pulse, storage time and peak turn-off gate current vs. junction temperature

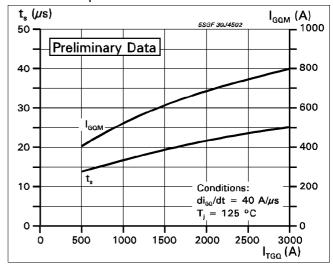


Fig. 17 Storage time and peak turn-off gate current vs. turn-off current

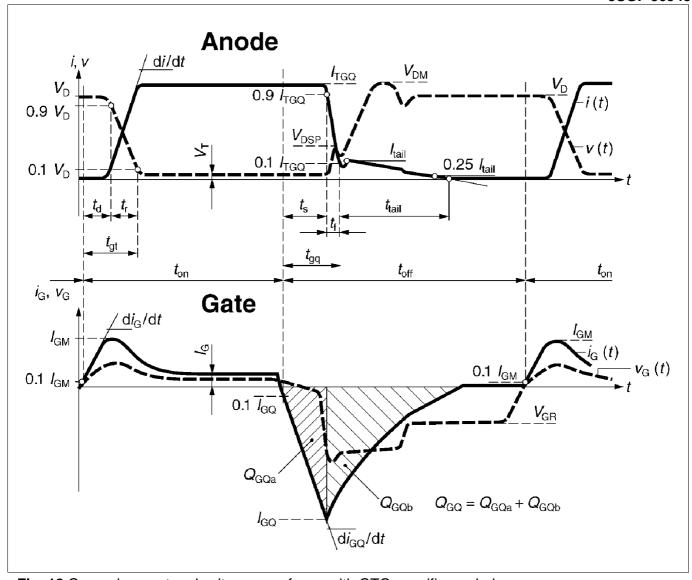
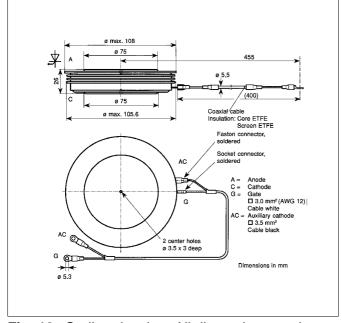



Fig. 18 General current and voltage waveforms with GTO-specific symbols

Fig. 19 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Reverse avalanche capability

In operation with an antiparallel freewheeling diode, the GTO reverse voltage V_R may exceed the rate value V_{RRM} due to stray inductance and diode turn-on voltage spike at high di/dt. The GTO is then driven into reverse avalanche. This condition is not dangerous for the GTO provided avalanche time and current are below 10 μ s and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation : $V_{GR} = 10...$ 15 V.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

Tel: +41 (0)62 888 6419 Fax: +41 (0)62 888 6306 E-mail info@ch.abb.com www.abbsem.com Doc. No. 5SYA 1211-04 Aug. 2000