ESP32-PICO-D4 Datasheet

Version 1.3

Espressif Systems

About This Document

This document provides an introduction to the specifications of the ESP32-PICO-D4 module.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation. Please subscribe here.

Certification

Download certificates for Espressif products from here.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2018 Espressif Inc. All rights reserved.

Contents

1	Overview	1
2 2.1 2.2 2.3	Pin Definitions Pin Layout Pin Description Strapping Pins	3 3 3 5
3.1 3.2 3.3 3.4	Functional Descriptions CPU and Internal Memory External Flash and SRAM Crystal Oscillators RTC and Power Consumption	7 7 7 7 8
4	Peripherals and Sensors	9
5.1 5.2 5.3 5.4 5.5	Electrical Characteristics Absolute Maximum Ratings Recommended Operating Conditions DC Characteristics (3.3V, 25°C) Wi-Fi Radio BLE Radio 5.5.1 Receiver 5.5.2 Transmitter Reflow Profile	10 10 10 10 11 11 11 12
6	Schematics	14
7	Peripheral Schematics	15
8	Package Information	17
9 9.1 9.2	Learning Resources Must-Read Documents Must-Have Resources	18 18 18
Re	evision History	19

List of Tables

1	ESP32-PICO-D4 Specifications	1
2	Pin Description	3
3	Strapping Pins	5
4	Power Consumption by Power Modes	8
5	Absolute Maximum Ratings	10
6	Recommended Operating Conditions	10
7	DC Characteristics	10
8	Wi-Fi Radio Characteristics	11
9	Receiver Characteristics – BLE	11
10	Transmitter Characteristics – BLE	12

List of Figures

1	ESP32-PICO-D4 Pin Layout	3
2	Reflow Profile	13
3	ESP32-PICO-D4 Module Schematics	14
4	ESP32-PICO-D4 Module Peripheral Schematics	15
5	ESP32-PICO-D4 Package	17

1. Overview

The ESP32-PICO-D4 is a System-in-Package (SIP) module that is based on ESP32, providing complete Wi-Fi and Bluetooth functionalities. The module has a size as small as (7.0 ± 0.1) mm \times (7.0 ± 0.1) mm \times (0.94 ± 0.1) mm, thus requiring minimal PCB area. The module integrates a 4-MB SPI flash.

At the core of this module is the ESP32 chip*, which is a single 2.4 GHz Wi-Fi and Bluetooth combo chip designed with TSMC's 40 nm ultra-low power technology. ESP32-PICO-D4 integrates all peripheral components seamlessly, including a crystal oscillator, flash, filter capacitors and RF matching links in one single package. Given that no other peripheral components are involved, module welding and testing is not required either. As such, ESP32-PICO-D4 reduces the complexity of supply chain and improves control efficiency.

With its ultra-small size, robust performance and low-energy consumption, ESP32-PICO-D4 is well suited for any space-limited or battery-operated applications, such as wearable electronics, medical equipment, sensors and other IoT products.

Note:

* For details on ESP32, please refer to the document ESP32 Datasheet.

Table 1 provides the specifications of the ESP32-PICO-D4 module.

Table 1: ESP32-PICO-D4 Specifications

Categories	Items	Specifications		
		802.11 b/g/n (802.11n up to 150 Mbps)		
 Wi-Fi	Protocols	A-MPDU and A-MSDU aggregation and 0.4 μ s guard interval		
		support		
	Frequency range	2.4 ~ 2.5 GHz		
	Protocols	Bluetooth V4.2 BR/EDR and BLE specification		
		NZIF receiver with -97 dBm sensitivity		
Bluetooth	Radio	Class-1, class-2 and class-3 transmitter		
		AFH		
	Audio	CVSD and SBC		
		ADC, DAC, touch sensor, SD/SDIO/MMC Host Controller,		
	Module interface	SPI, SDIO/SPI Slave Controller, EMAC, motor PWM, LED		
		PWM, UART, I2C, I2S, infrared remote controller, GPIO		
	On-chip sensor	Hall sensor		
	On-board clock	40 MHz crystal		
	Operating voltage/Power supply	2.7 ~ 3.6V		
Hardware	Operating current	Average: 80 mA		
	Minimum current delivered by	500 mA		
	power supply	300 IIIA		
	Operating temperature range	-40°C ~ 85°C		
	Package size	(7.0±0.1) mm x (7.0±0.1) mm x (0.94±0.1) mm		

Categories	Items	Specifications
	Wi-Fi mode	Station/SoftAP/SoftAP+Station/P2P
	Wi-Fi security	WPA/WPA2/WPA2-Enterprise/WPS
	Encryption	AES/RSA/ECC/SHA
	Eirmwara ungrada	UART Download / OTA (via network / download and write
Software	Firmware upgrade	firmware via host)
	Software development	Supports Cloud Server Development / SDK for custom
	Software development	firmware development
	Network protocols	IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT
	User configuration	AT instruction set, cloud server, Android/iOS app

2. Pin Definitions

2.1 Pin Layout

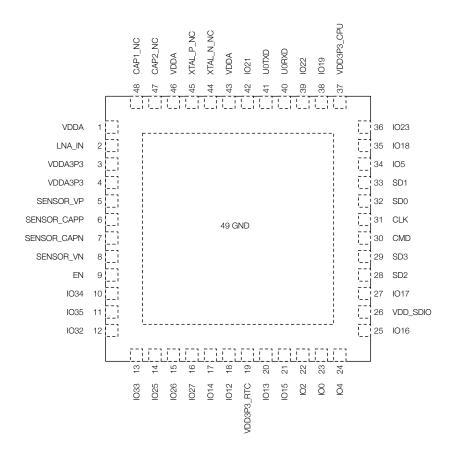


Figure 1: ESP32-PICO-D4 Pin Layout

2.2 Pin Description

The ESP32-PICO-D4 module has 48 pins. See pin definitions in Table 2.

Table 2: Pin Description

Name No. Type Function		Function				
	Analog					
VDDA	VDDA 1 P Analog power supply (2.3V ~ 3.6V)					
LNA_IN	2	I/O	RF input and output			
VDDA3P3	3	Р	Analog power supply (2.3V ~ 3.6V)			
VDDA3P3	4	Р	Analog power supply (2.3V ~ 3.6V)			
SENSOR_VP	5	1	GPIO36, ADC1_CH0, RTC_GPIO0			
SENSOR_CAPP	6	1	GPIO37, ADC1_CH1, RTC_GPIO1			
SENSOR_CAPN	7	1	GPIO38, ADC1_CH2, RTC_GPIO2			
SENSOR_VN	8	I	GPIO39, ADC1_CH3, RTC_GPIO3			

Name	No.	Type	Function	
			High: On; enables the module	
EN	9	1	Low: Off; resets the module	
			Note: Do not leave this pin floating.	
IO34	10	I	ADC1_CH6, RTC_GPIO4	
IO35	11	I	ADC1_CH7, RTC_GPIO5	
IO32	12	I/O	32K_XP (32.768 kHz crystal oscillator input), ADC1_CH4, TOUCH9,	
1032	12	1/0	RTC_GPIO9	
IO33	10	I/O	32K_XN (32.768 kHz crystal oscillator output), ADC1_CH5, TOUCH8,	
1033	13	1/0	RTC_GPIO8	
IO25	14	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0	
IO26	15	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	
IO27	16	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV	
IO14	17	I/O	ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK,	
1014	17	1/0	SD_CLK, EMAC_TXD2	
IO12	18	I/O	ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ, HS2_DATA2,	
1012	10	1/0	SD_DATA2, EMAC_TXD3	
VDD3P3_RTC	19	Р	Input power supply for RTC IO (2.3V ~ 3.6V)	
IO13	20	I/O	ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3,	
SD_DATA3, EMAC_RX_ER		SD_DATA3, EMAC_RX_ER		
IO15	21	I/O	ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICS0, HS2_CMD,	
1010		""	SD_CMD, EMAC_RXD3	
IO2 22		I/O	ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,	
102			SD_DATA0	
100	23	I/O	ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK	
104	24	I/O	ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,	
			SD_DATA1, EMAC_TX_ER	
IO16	25	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT	
VDD_SDIO	26	Р	Output power supply: the same voltage as VDD3P3_RTC	
IO17	27	I/O	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180	
SD2	28	I/O	GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD	
SD3	29	I/O	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD	
CMD	30	I/O	GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS	
CLK	31	I/O	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS	
SD0	32	I/O	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS	
SD1	33	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS	
IO5	34	I/O	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK	
IO18	35	I/O	GPIO18, VSPICLK, HS1_DATA7	
IO23	36	I/O	GPIO23, VSPID, HS1_STROBE	
VDD3P3_CPU	37	Р	Input power supply for CPU IO (1.8V ~ 3.6V)	
IO19	38	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0	
IO22	39	I/O	GPIO22, VSPIWP, UORTS, EMAC_TXD1	
U0RXD	40	I/O	GPIO3, U0RXD, CLK_OUT2	
U0TXD	41	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2	
IO21	42	I/O	GPIO21, VSPIHD, EMAC_TX_EN	

Name	No.	Туре	Function
VDDA	43	Р	Analog power supply (2.3V ~ 3.6V)
XTAL_N_NC	44	-	NC
XTAL_P_NC	45	-	NC
VDDA	46	Р	Analog power supply (2.3V ~ 3.6V)
CAP2_NC	47	-	NC
CAP1_NC	48	-	NC

Important:

Pins IO16, IO17, CMD, CLK, SD0 and SD1 are used for connecting the embedded flash, and are not recommended for other uses.

2.3 Strapping Pins

ESP32 has five strapping pins, which can be seen in Chapter 6 Schematics:

- MTDI
- GPI00
- GPIO2
- MTDO
- GPIO5

Software can read the values of these five bits from register "GPIO_STRAPPING".

During the chip's system reset (power-on-reset, RTC watchdog reset and brownout reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. The strapping bits configure the device's boot mode, the operating voltage of VDD_SDIO and other initial system settings.

Each strapping pin is connected to its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32.

After reset, the strapping pins work as normal-function pins.

Refer to Table 3 for a detailed boot-mode configuration by strapping pins.

Table 3: Strapping Pins

Voltage of Internal LDO (VDD_SDIO)							
Pin Default 3.3V 1.8V							
MTDI	Pull-down	0	1				
	Booting Mode						
Pin	Pin Default SPI Boot Download Boot						
GPIO0 Pull-up 1 0							

5

GPIO2	Pull-down	Don't	t-care	0					
	Enabling/Disabling Debugging Log Print over U0TXD During Booting								
Pin	Pin Default U0TXD Toggling U0TXD Silent								
MTDO	Pull-up	-	1	0					
			Timing of SDIO Slave						
Pin	Default	Falling-edge Input	Falling-edge Input	Rising-edge Input	Rising-edge Input				
ГШ		Falling-edge Output	Rising-edge Output	Falling-edge Output	Rising-edge Output				
MTDO Pull-up 0		0	1	1					
GPIO5 Pull-up 0		1	0	1					

Note:

- Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave", after booting.
- The operating voltage of ESP32-PICO-D4's integrated external SPI flash is 3.3V. Therefore, the strapping pin MTDI should hold bit "0" during the module power-on reset.

3. Functional Descriptions

This chapter describes the modules integrated in ESP32-PICO-D4, and their functions.

3.1 CPU and Internal Memory

ESP32 contains two low-power Xtensa® 32-bit LX6 microprocessors. The internal memory includes:

- 448 kB of ROM for booting and core functions.
- 520 kB of on-chip SRAM for data and instructions.
- 8 kB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is accessed by the main CPU during RTC Boot from the Deep-sleep mode.
- 8 kB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by the co-processor during the Deep-sleep mode.
- 1 kbit of eFuse: 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including flash-encryption and chip-ID.

3.2 External Flash and SRAM

ESP32 supports multiple external QSPI flash and SRAM chips. More details can be found in Chapter SPI in the <u>ESP32 Technical Reference Manual</u>. ESP32 also supports hardware encryption/decryption based on AES to protect developers' programs and data in flash.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

- Up to 16 MB of external flash can be mapped into CPU instruction memory space and read-only memory space simultaneously.
 - When external flash is mapped into CPU instruction memory space, up to 11 MB+248 KB can be mapped at a time. Note that if more than 3 MB+248 KB are mapped, cache performance will be reduced due to speculative reads by the CPU.
 - When external flash is mapped into read-only data memory space, up to 4 MB can be mapped at a time. 8-bit, 16-bit and 32-bit reads are supported.
- External SRAM can be mapped into CPU data memory space. SRAM up to 8 MB is supported and up to 4 MB can be mapped at a time. 8-bit, 16-bit and 32-bit reads and writes are supported.

The ESP32-PICO-D4 module integrates 4 MB of external SPI flash. The 4-MB SPI flash can be memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported.

3.3 Crystal Oscillators

ESP32-PICO-D4 integrates a 40 MHz crystal oscillator.

3.4 RTC and Power Consumption

With the use of advanced power-management technologies, ESP32 can switch between different power modes.

Power modes

- Active mode: The chip radio is powered on. The chip can receive, transmit, or listen.
- Modem-sleep mode: The CPU is operational and the clock is configurable. The Wi-Fi/Bluetooth baseband and radio are disabled.
- Light-sleep mode: The CPU is paused. The RTC memory and RTC peripherals, as well as the ULP co-processor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip.
- Deep-sleep mode: Only RTC memory and RTC peripherals are powered on. Wi-Fi and Bluetooth connection data are stored in the RTC memory. The ULP co-processor is functional.
- Hibernation mode: The internal 8-MHz oscillator and ULP co-processor are disabled. The RTC recovery memory is powered down. Only one RTC timer on the slow clock and certain RTC GPIOs are active.
 The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

The power consumption varies with different power modes and work statuses of functional modules. Please see Table 4 for details.

Power mode	Description	Power consumption
	Wi-Fi Tx packet	
Active (RF working)	Wi-Fi / BT Tx packet	Please refer to ESP32 Datasheet.
	Wi-Fi / BT Rx and listening	
		Max speed 240 MHz: 30 mA ~ 50 mA
Modem-sleep	The CPU is powered on.	Normal speed 80 MHz: 20 mA ~ 25 mA
		Slow speed 2 MHz: 2 mA ~ 4 mA
Light-sleep	-	0.8 mA
	The ULP co-processor is powered on.	150 μA
Deep-sleep	ULP sensor-monitored pattern	100 μA @1% duty
	RTC timer + RTC memory	10 μΑ
Hibernation	RTC timer only	5 μΑ
Power off	CHIP_PU is set to low level, the chip is powered off	0.1 μΑ

Table 4: Power Consumption by Power Modes

Note:

- When Wi-Fi is enabled, the chip switches between Active and Modem-sleep mode. Therefore, power consumption changes accordingly.
- In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.
- During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to operate.
- When the system works in the ULP sensor-monitored pattern, the ULP co-processor works with the ULP sensor periodically; ADC works with a duty cycle of 1%, so the power consumption is 100 μ A.

4. Peripherals and Sensors

Please refer to Section Peripherals and Sensors in *ESP32 Datasheet*.

Note:

External connections can be made to any GPIO except for GPIO16 and GPIO17. These two GPIOs are connected to the module's integrated SPI flash. For details, please see Section 6 Schematics.

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device.

Table 5: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	-	-0.3	3.6	V
T_{store}	Storage temperature	-40	150	°C

5.2 Recommended Operating Conditions

Table 6: Recommended Operating Conditions

Symbol	Parameter	Min	Typical	Max	Unit
VDD33	-	2.7	3.3	3.6	V
I_{VDD}	Current delivered by external power supply	0.5	-	-	А
Т	Operating temperature	-40	-	85	°C

5.3 DC Characteristics (3.3V, 25°C)

Table 7: DC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	-	2	-	рF
V_{IH}	High-level input voltage	$0.75 \times VDD^1$	-	VDD + 0.3	V
V_{IL}	Low-level input voltage	-0.3	-	0.25 × VDD	V
_{IH}	High-level input current	-	-	50	nA
_{IL}	Low-level input current	-	-	50	nA
V_{OH}	High-level output voltage	0.8 × VDD	-	-	V
V_{OL}	Low-level output voltage	-	-	0.1 × VDD	V
	High-level source current (VDD = 3.3V, V_{OH} =		40	-	mA
OH	2.64V, PAD_DRIVER = 3)	_			IIIA
I_{OL}	Low-level sink current (VDD = 3.3V, V_{OL} =		28	_	mA
	0.495V, PAD_DRIVER = 3)	_	20	_	
R_{PU}	Pull-up resistor	-	45	-	kΩ
R_{PD}	Pull-down resistor	-	45	-	kΩ
V_{IL_nRST}	Low-level input voltage of EN to reset the mod-			0.6	V
	ule	_		0.0	V

^{1.} VDD is the I/O voltage for a particular power domain of pins. More details can be found in Appendix IO_MUX of ESP32 Datasheet.

5.4 Wi-Fi Radio

Table 8: Wi-Fi Radio Characteristics

Description	Min	Typical	Max	Unit			
Input frequency	2412	-	2484	MHz			
Output impedance	-	50	-	Ω			
	Tx power						
Output power of PA for 72.2 Mbps	13	14	15	dBm			
Output power of PA for 11b mode	19.5	20	20.5	dBm			
	Sensitivity						
DSSS, 1 Mbps	-	-98	-	dBm			
CCK, 11 Mbps	-	- 91	-	dBm			
OFDM, 6 Mbps	-	-93	-	dBm			
OFDM, 54 Mbps	-	-75	-	dBm			
HT20, MCS0	-	-93	-	dBm			
HT20, MCS7	-	-73	-	dBm			
HT40, MCS0	-	-90	-	dBm			
HT40, MCS7	-	-70	-	dBm			
MCS32	-	-89	-	dBm			
Adjacent channel rejection							
OFDM, 6 Mbps	-	37	-	dB			
OFDM, 54 Mbps	-	21	-	dB			
HT20, MCS0	-	37	-	dB			
HT20, MCS7	-	20	-	dB			

5.5 BLE Radio

5.5.1 Receiver

Table 9: Receiver Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-	-	-97	-	dBm
Maximum received signal @30.8% PER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	- 5	-	dB
	F = F0 – 1 MHz	-	-5	-	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-25	-	dB
Adjacent charmer selectivity 0/1	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out of hand blooking porformance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
Out-of-band blocking performance	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm

Parameter	Conditions	Min	Тур	Max	Unit
Intermodulation	-	-36	-	-	dBm

5.5.2 Transmitter

Table 10: Transmitter Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power	-	-	0	-	dBm
Gain control step	-	-	3	-	dBm
RF power control range	-	-12	-	+12	dBm
	$F = F0 \pm 2 MHz$	-	-52	-	dBm
Adjacent channel transmit power	$F = F0 \pm 3 MHz$	-	-58	-	dBm
	$F = F0 \pm > 3 MHz$	-	-60	-	dBm
$\Delta f1_{\text{avg}}$	-	-	-	265	kHz
$\Delta f2$ max	-	247	-	-	kHz
$\Delta f 2$ avg $/\Delta f 1$ avg	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μs
Drift	-	-	2	-	kHz

5.6 Reflow Profile

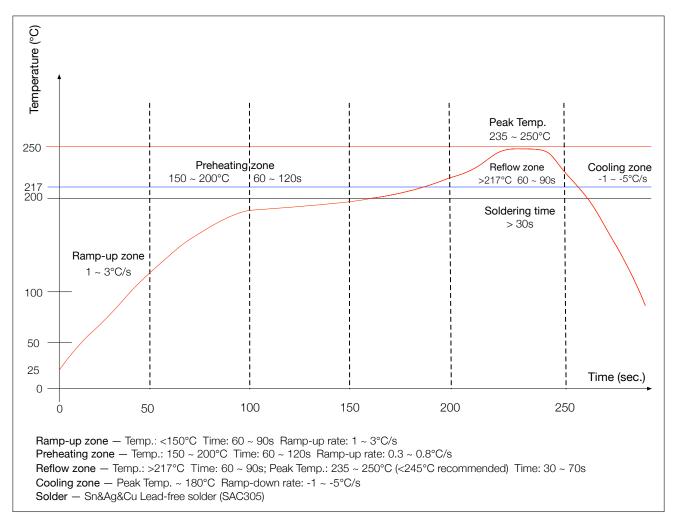
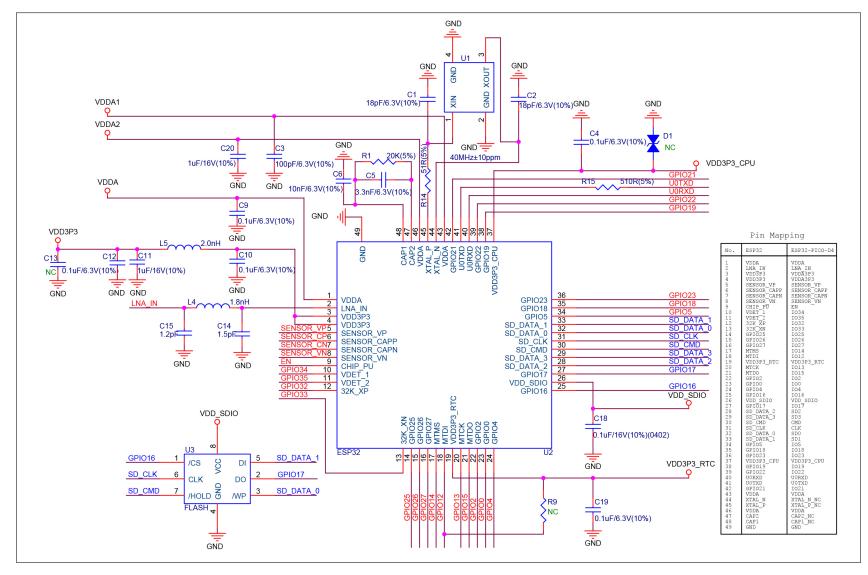
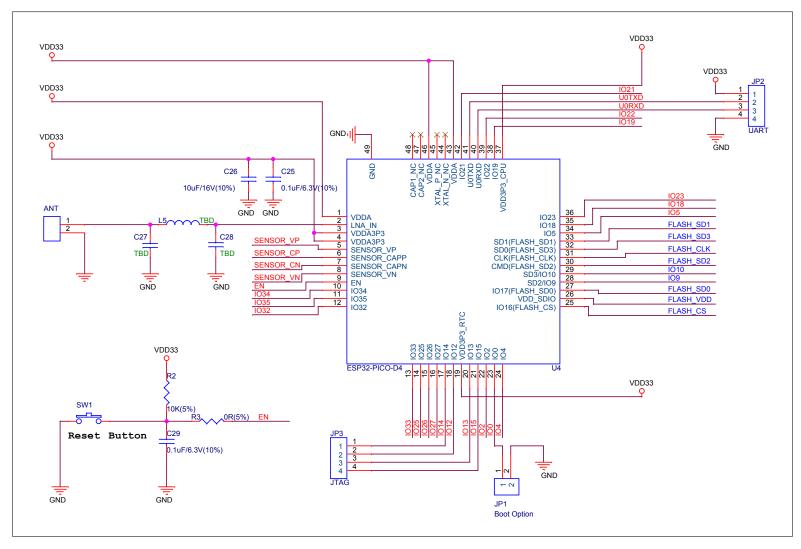



Figure 2: Reflow Profile

6. Schematics



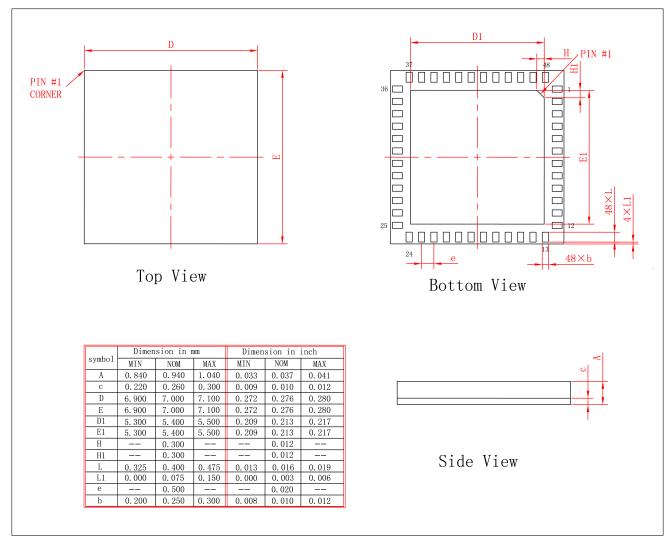
9

SCHEMATICS

Figure 3: ESP32-PICO-D4 Module Schematics

7. Peripheral Schematics

PERIPHERAL SCHEMATICS


Figure 4: ESP32-PICO-D4 Module Peripheral Schematics

Note:

- When ESP32 is powered on and off repeatedly by switching the power rails, and there is a large capacitor on the VDDA3P3 rail, a discharge circuit can be added to the VDDA3P3 rail. Please find details in Chapter **Peripheral Schematics**, in <u>ESP32-WROOM-32 Datasheet</u>.
- When battery is used as the power supply for ESP32 series of chips and modules, a supply voltage supervisor is recommended to avoid boot failure due to low voltage. Users are recommended to pull CHIP_PU low if the power supply for ESP32 is below 2.3V. For the reset circuit, please refer to Chapter **Peripheral Schematics**, in *ESP32-WROOM-32 Datasheet*.

PERIPHERAL SCHEMATICS

8. Package Information

PACKAGE INFORMATION

Figure 5: ESP32-PICO-D4 Package

9. Learning Resources

9.1 Must-Read Documents

The following link provides documents related to ESP32.

• ESP32 Datasheet

This document provides an introduction to the specifications of the ESP32 hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc.

• ESP-IDF Programming Guide

It hosts extensive documentation for ESP-IDF ranging from hardware guides to API reference.

• ESP32 Technical Reference Manual

The manual provides detailed information on how to use the ESP32 memory and peripherals.

• ESP32 Hardware Resources

The zip files include the schematics, PCB layout, Gerber and BOM list of ESP32 modules and development boards.

• ESP32 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32 series of products, including the ESP32 chip, the ESP32 modules and development boards.

• ESP32 AT Instruction Set and Examples

This document introduces the ESP32 AT commands, explains how to use them, and provides examples of several common AT commands.

• Espressif Products Ordering Information

9.2 Must-Have Resources

Here are the ESP32-related must-have resources.

• ESP32 BBS

This is an Engineer-to-Engineer (E2E) Community for ESP32 where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

• ESP32 GitHub

ESP32 development projects are freely distributed under Espressif's MIT license on GitHub. It is established to help developers get started with ESP32 and foster innovation and the growth of general knowledge about the hardware and software surrounding ESP32 devices.

ESP32 Tools

This is a webpage where users can download ESP32 Flash Download Tools and the zip file "ESP32 Certification and Test".

• ESP-IDF

This webpage links users to the official IoT development framework for ESP32.

• ESP32 Resources

This webpage provides the links to all available ESP32 documents, SDK and tools.

Revision History

Date	Version	Release notes
2018.06	V1.3	 Changed the voltage range of VDD3P3_RTC from 1.8-3.6V to 2.3-3.6V in Table 2: Pin Description; Changed the voltage range of VDD_SDIO from "1.8V or the same voltage as VDD3P3_RTC" to "the same voltage as VDD3P3_RTC" in Table 2: Pin Description; Deleted the content about temperature sensor and LNA pre-amplifier; Updated Chapter 3: Functional Description; Updated the note in Chapter 4: Peripherals and Sensors; Deleted the note on pad49 and added two other notes in Chapter 7: Peripheral Schematics; Changes to electrical characteristics: Updated Table 5: Absolute Maximum Ratings; Added Table 6: Recommended Operating Conditions; Added Table 7: DC Characteristics; Updated the values of "Gain control step", "Adjacent channel transmit power" in Table 10: Transmitter Characteristics - BLE.
2018.03	V1.2	Updated the pin description of VDD_SDIO in Section 2.2; Updated the ESP32-PICO-D4 Pin Layout in Section 2.1; Updated the ESP32-PICO-D4 Module Schematics in Chapter 6; Updated the ESP32-PICO-D4 Module Peripheral Schematics in Chapter 7.
2017.09	V1.1	Operating voltage/power supply range updated to 2.7 ~ 3.6V; Added a note in Chapter 7.
2017.08	V1.0	First release.