

AN5057 Application note

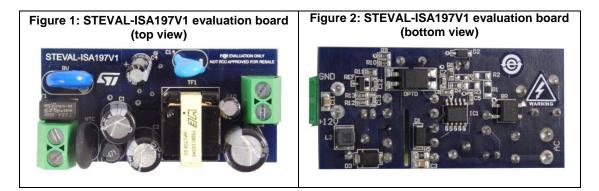
12 V, 7.8 W isolated flyback converter based on VIPer114LS

Introduction

The STEVAL-ISA197V1 evaluation board is a 12 V, 7.8 W power supply in isolated flyback topology with VIPer114LS, the latest innovative IC by STMicroelectronics for building smart power supplies with green energy management.

The board features:

- Five-star energy efficient when operating at no load (PIN_NO_LOAD < 20 mW at 230 VAC)
- Compliant with the 10% load efficiency and 4-point average active mode efficiency targets prescribed by the European CoC ver.5 Tier 2
- Meets IEC55022 Class B conducted EMI even with reduced EMI filter, thanks to the frequency jittering feature
- RoHS compliant


The available protections are:

- Pulse skip mode to avoid flux-runaway
- Delayed overload protection (OLP)
- Max duty cycle counter
- V_{CC} clamp
- Input or output overvoltage protection
- Thermal shutdown

Except for pulse-skip mode, all protections are in auto-restart mode.

The VIPer114LS features:

- 800 V avalanche rugged Power MOSFET
- Embedded HV start-up
- Pulse frequency modulation (PFM) and ultra-low stand-by consumption of the internal circuitry under light load condition
- 60 kHz fixed switching frequency with jittering
- Embedded error amplifier internally referenced to 1.2 V ±2%
- Self-supply option to avoid auxiliary winding and bias components
- Current mode PWM controller with drain current limit protection for easy compensation

_

Col	ntents				
1	Board e	electrical specifications and design	5		
	1.1	Schematic diagram	6		
	1.2	Bill of materials	7		
	1.3	Transformer	9		
2	Perform	nance data	10		
	2.1	Output voltage characteristics	10		
	2.2	Efficiency measurements	11		
	2.3	No load consumption	12		
	2.4	Light load consumption	13		
3	Typical	waveforms	15		
	3.1	Dynamic step load regulation	16		
4	Soft-sta	art	17		
5	Protect	ion features	18		
	5.1	Overload and short-circuit protection			
	5.2	Pulse skip mode			
	5.3	Max. duty cycle counter protection	20		
	5.4	Input overvoltage protection	21		
6	Conduc	cted noise measurements	23		
7	Therma	II tests	24		
8		sions			
9		ion board tools and documentation			
3 10					
10	Revision history27				

List of tables

Table 1: STEVAL-ISA197V1 electrical specifications	5
Table 2: STEVAL-ISA197V1 bill of materials	7
Table 3: Transformer characteristics	9
Table 4: Output voltage line-load regulation	.10
Table 5: EC CoC version 5 energy-efficiency criteria for active mode (excluding low voltage external	
power supplies), Tier 2	.11
Table 6: EC CoC version 5 energy-efficiency criteria for active mode (excluding low voltage external	
power supplies) at 10% maximum output load, Tier 2	.11
Table 7: Average efficiency at 115 V _{AC}	.11
Table 8: Average efficiency at 230 V _{AC}	.12
Table 9: Average efficiency at 10% of the max. output load	.12
Table 10: Temperature of the key components (T _{AMB} = 25 °C, emissivity = 0.95 for all points)	.24
Table 11: Document revision history	.27

List of figures

Figure 1: STEVAL-ISA197V1 evaluation board (top view)	4
Figure 2: STEVAL-ISA197V1 evaluation board (top view)	
Figure 3: STEVAL-ISA197V1 evaluation board (bottom view)	
Figure 4: Dimensional drawing, pin placement (distances, bottom view) and electrical diagrams	
Figure 5: Dimensional drawing and pin placement diagram – bottom, side and top view	
Figure 6: Output voltage load regulation at 115 V _{AC}	
Figure 7: Efficiency vs. output current load Figure 8: No load consumption vs. input voltage	
Figure 8: No load consumption vs. Input voltage Figure 9: Light load consumption at different output power - Input OVP disabled	
Figure 10: Light load consumption at different output power - Input OVP enabled	
Figure 11: Drain current and voltage at full load at 90 V _{AC}	
Figure 12: Drain current and voltage at full load at 265 V _{AC}	
Figure 13: Drain current and voltage at full load at 115 V _{AC}	
Figure 14: Drain current and voltage at full load at 230 V _{AC}	
Figure 15: Output voltage ripple at full load at 115 V _{AC}	16
Figure 16: Output voltage ripple at full load at 230 V _{AC}	16
Figure 17: Dynamic step load (I _{OUT} from 0 to 0.65 A) at 115 V _{AC}	16
Figure 18: Dynamic step load (Iout from 0 to 0.65 A) at 230 V _{AC}	
Figure 19: Soft-start feature	
Figure 20: Overload event- OLP triggering	18
Figure 21: Overload event- continuous overload	
Figure 22: Overload event- tss and tovL	
Figure 23: Overload event- fault removed and autorestart	
Figure 24: Startup at 265 V _{AC} - full load	
Figure 25: Startup at 265 V _{AC} - full load magnification	20
Figure 26: Shutdown by max. duty cycle counter - first tripping and restart	21
Figure 27: Shutdown by max. duty cycle counter - steady state	
Figure 28: Shutdown by max. duty cycle counter - ten consecutive switching cycles	
Figure 29: Input OVP - triggering	
Figure 30: Input OVP - steady state	
Figure 31: Input OVP - debounce time	
Figure 32: Input OVP - removed	
Figure 33: CE average measurement at 115 V _{AC} full load	
Figure 34: CE average measurement at 230 V _{AC} full load	
Figure 35: Thermal map at 115 V _{AC} full load (top layer)	
Figure 36: Thermal map at 115 V _{AC} full load (bottom layer)	
Figure 37: Thermal map at 230 V _{AC} full load (top layer)	
Figure 38: Thermal map at 230 V _{AC} full load (bottom layer)	24

DocID030858 Rev 1

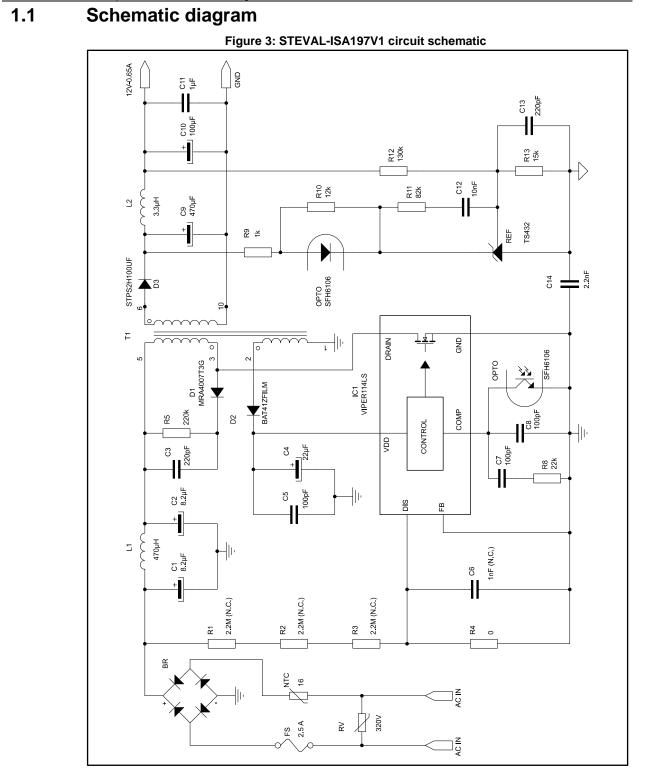
1

Board electrical specifications and design

Parameter		Тур.	Max.	Unit
AC main input voltage	90		265	VAC
Main frequency (f _L)	50		60	Hz
Output Voltage	11.4	12	12.6	V
Output Current			0.65	А
Rated output power		7.8		W
Output ripple voltage			100	mV
Standby input power at 230 V _{AC}			20	mW
Active mode efficiency				%
Active mode efficiency at 10% nameplate O/P				%
Ambient operating temperature			60	°C

Table 1: STEVAL-ISA197V1 electrical specifications

The power supply is set in isolated flyback topology (see Section 1.1: "Schematic diagram" for the STEVAL-ISA197V1 schematic diagram and Section 1.2: "Bill of materials" for the BOM).


The input section includes a diode bridge (BR), an NTC resistor for inrush current limiting and a π filter (C1, L1, C2) for EMC suppression.

A clamp network (D1, R5, C3) is used for leakage inductance demagnetization.

The resistors R1, R2, R3 and R4 (with C6 in parallel) create a voltage divider from the rectified input mains to DIS voltage which can be used to perform an input overvoltage protection (for further details refer to Section 5.4: "Input overvoltage protection").

As a default setting, R4 = 0 while R1, R2, R3 and C6 are not mounted to minimize the input power consumption at no load and light load.

57

DocID030858 Rev 1

6/28

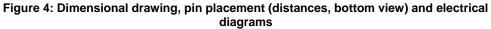
1.2 Bill of materials

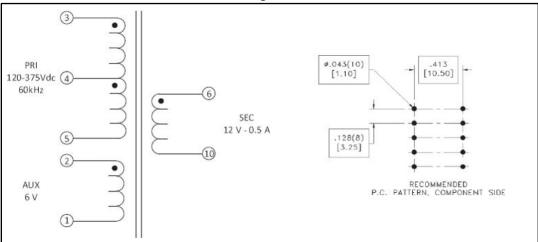
Table 2: STEVAL-ISA197V1 bill of materials							
Item	Q.ty	Ref.	Part/Value	Description	Manufacturer	Order code	
1	1	IN		Input connector	TE Connectivity	282837-2	
2	1	OUT		Output connector	TE Connectivity	282837-2	
3	1	RV		MOV	EPCOS	B72210S0321K101	
4	1	BR	MBS	Bridge rectifier	Taiwan Semiconductor	RMB6S	
5	1	FS	2.5 A	Fuse	Cooper Bussmann	SS-5-2-5A-BK	
6	1	NTC	16 Ω		EPCOS	B57236S160M	
7		R1		Not connected			
8		R2		Not connected			
9		R3		Not connected			
10	1	R4	0 Ω, 0603		Panasonic	ERJ3GEY0R00V	
11	1	R5	220 kΩ ±5%, 0.33 W, 0805		TE Connectivity	CRGH0805J220K	
12	1	R8	22 kΩ ±5%, 0.2 W, 0603		TE Connectivity	CRGH0603J22K	
13	1	R9	1 kΩ ±5%, 0.1 W, 0603		Panasonic	ERJ3GEYJ102V	
14	1	R10	12 kΩ ±5%, 0.1 W, 0603		Panasonic	ERJ3GEYJ123V	
15	1	R11	82 kΩ ±5%, 0.2 W, 0603		TE Connectivity	CRGH0603J82K	
16	1	R12	130 kΩ ±1%, 0.1 W, 0603		Panasonic	ERJ3EKF1303V	
17	1	R13	15 kΩ ±1%, 0.1 W, 0603		TE Connectivity	CRG0603F15K	
18	2	C1, C2	8.2 μF, 400 V, Ø 8 mm, p 3.5 mm	Electrolytic capacitor	Rubycon	400AX8.2M8X16	
20	1	C3	220 pF, 1000 V, 0805	MLCC capacitor	Kemet	C0805C221KDRACTU	
21	1	C4	22 µF, 50 V, Ø 5 mm, p 2 mm	Electrolytic capacitor	Rubycon	50YXM22MEFC5X11	

7/28

Board electrical specifications and design

AN5057


Item	Q.ty	Ref.	Part/Value	Description	Manufacturer	Order code
22	3	C5, C7, C8	100 pF, 50 V, 0603	MLCC capacitor	Wurth Elektronik	885012206077
23		C6		Not connected		
26	1	C9	470 μF, 25 V, Ø 10 mm, p 5 mm	Electrolytic capacitor	Rubycon	25YXH470MEFC10X16
27	1	C10	100 μF, 25 V, Ø 5 mm, p 2 mm	Electrolytic capacitor	Rubycon	25YXJ100M5X11
28	1	C11	1 μF, 25 V, 0805	MLCC capacitor	Murata	GRM21BR71E105KA99L
29	1	C12	10 nF, 50 V, 0603	MLCC capacitor	Murata	GRM188R71H103KA01D
30	1	C13	220 pF, 50 V, 0603	MLCC capacitor	Wurth Elektronik	885012206079
31	1	C14	2.2 nF, 250 Vac, Ø 8 mm, p 5 mm	Ceramic X1/Y2 capacitor	Murata	DE2E3KY222MA2BM01F
32	1	D1	1 A, 1000 V, SMA	General purpose diode	ONSemiconductors	MRA4007T3G
33	1	D2	0.2 A, 100 V, SOD-123	Signal Schottky	ST	BAT41ZFILM
34	1	D3	2 A, 100 V, SMB	Power Schottky	ST	STPS2H100U
35	1	L1	470 μH, XS Ø 6 mm, h 8.5 mm		Wurth Elektronik	7447462471
36	1	L2	3.3 μH, (4x4) mm		Wurth Elektronik	74404042033
37	1	IC1	SSO10	Offline HV converter	ST	VIPer114LS
38	1	OPT	SMD	Optocoupler	Vishay	SFH6106-2T
39	1	REF	SOT23	Reference	ST	TS432ILT
40	1	T1		Flyback transformer	Wurth Elektronik	7508110345 Rev6A



AN5057

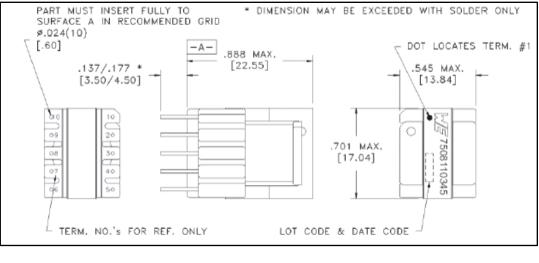
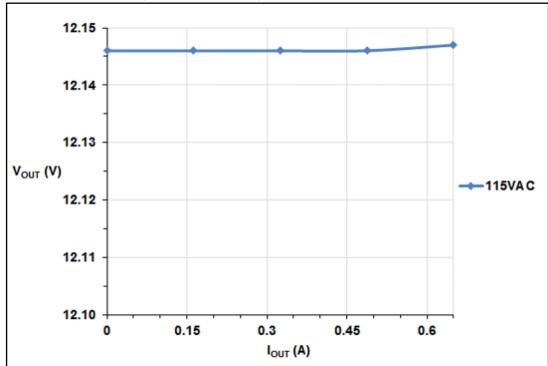

1.3 Transformer

Table 3: Transformer characteristics				
Parameter	Value			
Manufacturer	Wurth Elektronik			
Order code	7508110345 Rev6A			
Primary inductance	2 mH ± 10%			
Leakage inductance	45 µH Max			
Primary turns (3-5)	133			
Secondary turns (6-10)	23			
Auxiliary turns (2-1)	12			
Core	E16			

Figure 5: Dimensional drawing and pin placement diagram - bottom, side and top view

2 Performance data

2.1 Output voltage characteristics


The STEVAL-ISA197V1 output voltage has been measured in different line and load conditions.

The table below shows measurement results: the output voltage variation is negligible versus the load and line variation.

As the output voltage is little affected by line variations, *Figure 6: "Output voltage load regulation at 115* V_{AC} " just shows the load regulation at 115 V_{AC} .

	Vout (V)					
VIN [VAC]	No load	0.163 A	0.325 A	0.488 A	0.65 A	
90	12.147	12.147	12.147	12.147	12.147	
115	12.146	12.146	12.146	12.146	12.147	
150	12.146	12.146	12.146	12.146	12.146	
180	12.145	12.145	12.146	12.146	12.146	
230	12.145	12.145	12.145	12.145	12.145	
265	12.145	12.146	12.145	12.145	12.145	

Table 4: Output voltage line-load regulation

Figure 6: Output voltage load regulation at 115 V_{AC}

2.2 Efficiency measurements

AN5057

Any external power supply (EPS) must be capable of meeting the international regulation agency limits. The European code of conduct (EC CoC version 5) limit is taken as a reference.

Since this power supply is considered a no-low voltage power supply, the formula to calculate the minimum average efficiency is:

Table 5: EC CoC version 5 energy-efficiency criteria for active mode (excluding low voltage
external power supplies), Tier 2

Nameplate output power (Pno)	Minimum average efficiency (expressed as a decimal)
0 to ≤ 1 watt	≥ 0.5 *Pno + 0.169
> 1 to ≤ 49 watts	≥ [0.071* In (Pno)] - 0.00115*Pno + 0.670
> 49 watts	≥ 0.890

According to the above table, the minimum average efficiency is 80.7%, measured as the average of the efficiencies at 25%, 50%, 75% and 100% of the rated output power at nominal input voltages ($V_{IN} = 115 V_{AC}$ and $V_{IN} = 230 V_{AC}$).

Another requirement is the efficiency measured at 10% of the rated output power, according to the below table:

Table 6: EC CoC version 5 energy-efficiency criteria for active mode (excluding low voltage)	
external power supplies) at 10% maximum output load, Tier 2	

Nameplate output power (Pno)	Minimum average efficiency (expressed as a decimal)
0 to ≤ 1 watt	≥ 0.5 *Pno + 0.060
> 1 to ≤ 49 watts	≥ [0.071 * In (Pno)] – 0.00115 * Pno + 0.570
> 49 watts	≥ 0.790

For the considered application the minimum efficiency is 70.7%.

Table 7: "Average efficiency at 115 V_{AC} " and *Table 8: "Average efficiency at 230* V_{AC} " show all the efficiency measurement results.

Table 7:	Average	efficiency	at	115	Vac
----------	---------	------------	----	-----	-----

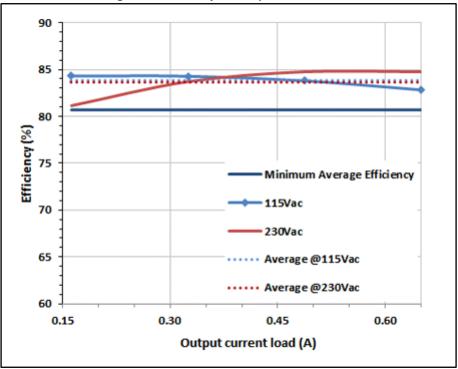

% load	Іоит (A)	Vout (V)	P _{IN} (W)	Роит (W)	Efficiency (%)
25%	0.163	12.146	2.341	1.974	84.31
50%	0.325	12.146	4.683	3.947	84.29
75%	0.488	12.146	7.066	5.921	83.80
100%	0.650	12.147	9.532	7.896	82.83
Average efficiency					83.81

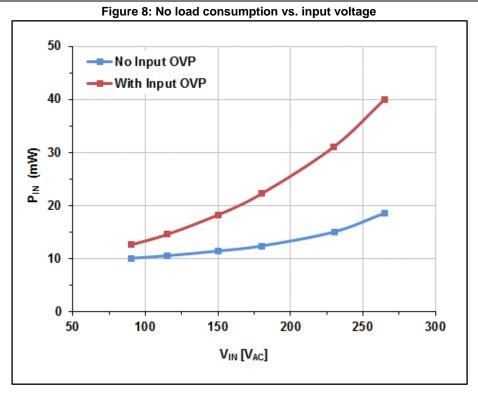
Table 8: Average efficiency at 230 V _{AC}					
% load	I _{оит} (А)	V _{оит} (V)	P _{IN} (W)	Р _{оит} (W)	Efficiency (%)
25%	0.163	12.145	2.432	1.974	81.15
50%	0.325	12.145	4.715	3.947	83.71
75%	0.488	12.145	6.985	5.921	84.76
100%	0.650	12.145	9.313	7.894	84.77
Average efficiency				83.60	

Table 9: Average efficiency at 10% of the max. output load

VIN [VAC]	Іоит (A)	V оит (V)	P _{IN} (W)	Роит (W)	Efficiency (%)
115	0.065	12.146	0.991	0.789	79.70
230	0.065	12.145	1.095	0.789	72.09

Figure	7:	Efficiency	v vs.	output	current	load
iguic	••	LINGICIU	y v.s.	output	current	louu

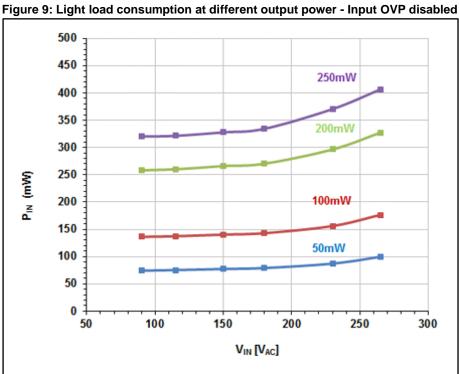
2.3 No load consumption


The converter input power has been measured at no load: in this condition the converter works in burst mode so that the average switching frequency is reduced, thus minimizing the frequency related losses.

Measurements have been performed both with the input OVP protection disabled (DIS pin connected to ground) and with the resistor divider connected to DIS pin (R1=R2=R3=2.2 M Ω , R4=18.7 k Ω and C6=1 nF).

The presence of the input OVP resistor divider, to sense the flyback input voltage when the protection is enabled, does not affect the average switching frequency but does affect the input power due to the power dissipated in the resistor divider itself.

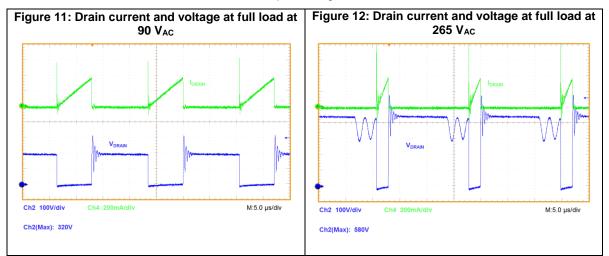
DocID030858 Rev 1

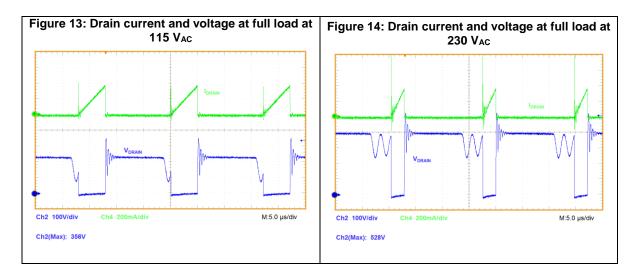


2.4 Light load consumption

Although the EC CoC has no other requirement regarding the light load performance, we also show the STEVAL-ISA197V1 evaluation board input power at light load to give quite complete information.

In particular, to be compliant with EuP Lot 6, the EPS requires an efficiency higher than 50% when the output load is 250 mW. Such measurements have been performed with the input OVP both enabled and disabled and shows how the evaluation board also meets this requirement.

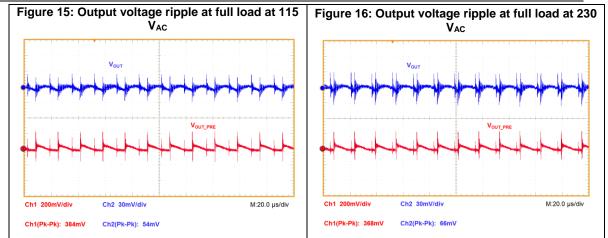



DocID030858 Rev 1

3 Typical waveforms

Figure 11: "Drain current and voltage at full load at 90 V_{AC} " and Figure 12: "Drain current and voltage at full load at 265 V_{AC} " show the drain voltage and current waveforms at full load condition for the minimum and maximum input voltage, whereas Figure 13: "Drain current and voltage at full load at 115 V_{AC} " and Figure 14: "Drain current and voltage at full load at 230 V_{AC} " show the two nominal input voltages.

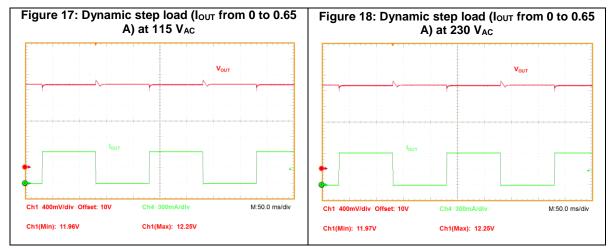
The output ripple at the switching frequency was also measured.


The board is equipped with an LC filter to further reduce the ripple without reducing the overall output ESR capacitor.

Furthermore, the voltage ripple across the output connector (V_{OUT}) and before the LC filter (V_{OUT_PRE}) was measured to verify the effectiveness of the LC filter, as shown in the following pictures.

Typical waveforms

AN5057



3.1 Dynamic step load regulation

In any power supply, it is important to measure the output voltage when the converter is submitted to dynamic load variations to ensure good stability and no overvoltage or undervoltage occurs.

The test has been performed by varying the output load from 0 to 0.65 A (100% of the nominal value) for both nominal input voltages.

In any tested condition, no abnormal oscillations were noticed on the output and over/under shoot were well within acceptable values.

4 Soft-start

When the converter starts, the output capacitor is discharged and needs some time to reach the steady state condition. During this time, the power demand from the control loop is the maximum, while the reflected voltage is low; these two conditions could lead to the converter deep continuous operating mode.

In addition, when the MOSFET is switched on, it cannot immediately be switched off as the minimum on-time (T_{ON_MIN}) has to be elapsed.

Because of the converter deep continuous working mode, during this T_{ON_MIN} , an excess of drain current can overstress the converter component as well as the device itself, the output diode and the transformer. Transformer saturation is also possible under these conditions.

To avoid all this, the VIPer11 implements an internal soft-start feature. As the device starts to work, regardless of the control loop request, the drain current is allowed to gradually increase from zero to the maximum value.

The drain current limit is increased by steps and the values range from 0 to the drain current limitation value (I_{DLIM}) in eight steps. The soft-start time, t_{SS} , is internally set at 8 ms.

The figure below shows the converter soft-start phase when operating at the minimum line voltage and maximum load.

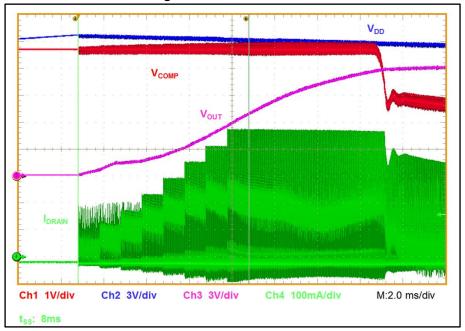


Figure 19: Soft-start feature

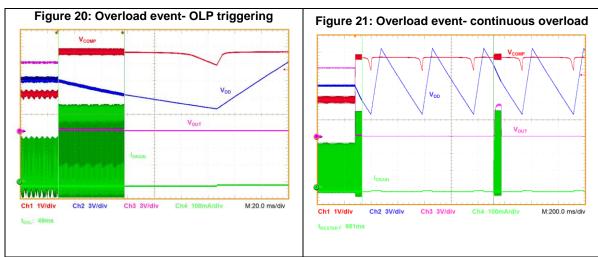
To increase end-product safety and reliability, VIPer11 has some protection features: overload protection, pulse skip mode, max. duty cycle counter protection and input/output overvoltage protection.

In the following sections, these protections are tested and the results shown.

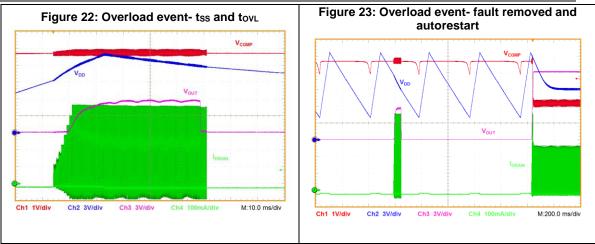
5.1 Overload and short-circuit protection

When the load power demand increases, the feedback loop reacts by increasing the voltage on pin: the PWM current set point increases and the power delivered to the output rises. This process ends when the delivered power equals the load power request.

In case of overload or output short-circuit (see *Figure 20: "Overload event- OLP triggering"*), the drain current value reaches the I_{DLIM}.


In every cycle this condition is met, an internal OCP counter is incremented; if this overload condition is continuously maintained for the time tovL (50 ms typical), the protection is tripped (see *Figure 20: "Overload event- OLP triggering"*), the power section is turned off and the converter is disabled for a tRESTART time (1 s typical).

After this elapses, the IC resumes switching and, if the fault condition is still present, the protection occurs indefinitely in the same way (*Figure 21: "Overload event- continuous overload"*). This ensures the converter to restart attempts with low repetition rate to make it work safely with extremely low power throughput and avoiding the IC overheating in case of repeated overload events.


Furthermore, at startup, after any protection tripping, the internal soft-start function is invoked (*Figure 22: "Overload event-* t_{SS} and t_{OVL} ") to reduce the stress on the secondary diode.

After the fault removal, the IC resumes working normally. If the fault is removed during t_{SS} or t_{OVL} , before the protection tripping, the counter is decremented on a cycle-by-cycle basis down to zero and the protection is not tripped.

If the short-circuit is removed during t_{RESTART}, the IC has to wait for the t_{RESTART} to elapse before resuming to switch (*Figure 23: "Overload event- fault removed and autorestart"*).

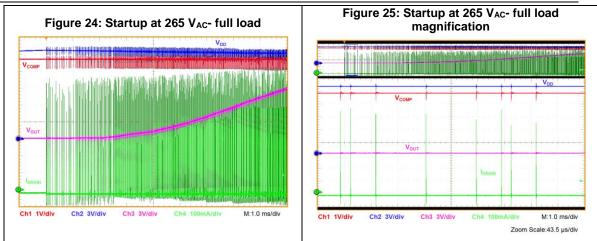
5.2 Pulse skip mode

Any time the drain peak current (I_{DRAIN}) exceeds I_{DLIM} within the minimum on-time (T_{ON_MIN}), a switching cycle is skipped.

The check is made on a cycle-by-cycle basis and the cycles can be skipped until the minimum switching frequency F_{OSC_MIN} (15 kHz, typical) is reached.

If the above condition is indefinitely met, as the internal OCP counter reaches its end-ofcount, the IC is stopped for t_{RESTART} (1s, typical) and activated again via the soft-start phase.

Any time I_{DRAIN} does not exceed I_{DLIM} within T_{ON_MIN} , a switching cycle is restored. The check is made on a cycle-by-cycle basis and the cycles can be restored until the nominal switching frequency F_{OSC} is reached.


Providing, when needed, an inductor discharge time longer than the one allowed at the nominal switching frequency, the protection helps to limit the "flux runaway" effect, often present at converter startup: the primary MOSFET, charged during the minimum on-time through the input voltage, cannot discharge the same amount during the off-time, due to the fact that the output voltage is very low.

The result is a definite increase of average inductor current that can dangerously reach high values until the output capacitor is not charged enough to ensure the inductor discharge rate needed for the volt second balance.

At startup at 265 V_{AC} (input voltage), during the first switching cycle, the drain current reaches its limitation during the T_{ON_MIN} then the switching frequency is halved until reaching the minimum switching frequency (15 kHz). Any time the drain current is below the current limitation (within the minimum on-time), the switching frequency increases until the nominal value F_{OSC} is reached (see figures below).

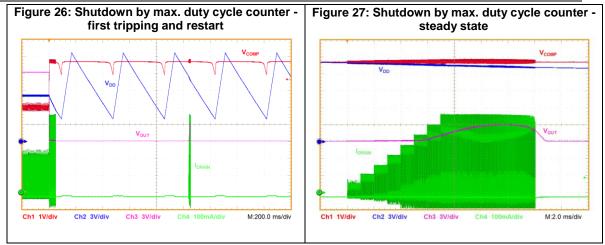
5.3 Max. duty cycle counter protection

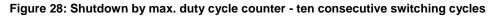
The IC embeds a max. duty cycle counter which disables the PWM if the MOSFET is turned off by the max. duty cycle (70% min, 80% max) for ten consecutive switching cycles.

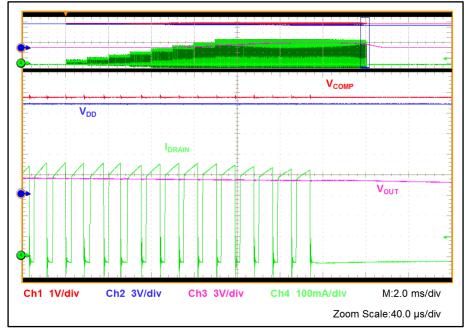
After the protection tripping, the PWM is disabled for $t_{RESTART}$ and then reactivated via the soft-start phase until the fault condition is removed.

In some cases (i.e., breaking of the loop at low input voltage) even if V_{COMP} is saturated high, the OLP cannot be triggered because at every switching cycle the PWM is turned off by the maximum duty cycle before the drain peak current reaches I_{DLIM} .

As a result, the output voltage V_{OUT} could increase out of control and be maintained indefinitely at a much higher value than the nominal one with a risk for the output capacitor, the output diode and the IC itself.


The max. duty cycle counter protection prevents this kind of failures.


To test this protection, heavy load and low input voltage have been selected. The IC is protected in auto-restart mode for t_{RESTART} (1 s typical), then tries to start up via the soft-start phase until the fault condition is removed (*Figure 26: "Shutdown by max. duty cycle counter - first tripping and restart"* and *Figure 27: "Shutdown by max. duty cycle counter - steady state"*).


Figure 28: "Shutdown by max. duty cycle counter - ten consecutive switching cycles" highlights the ten cycles causing the protection intervention.

5.4 Input overvoltage protection

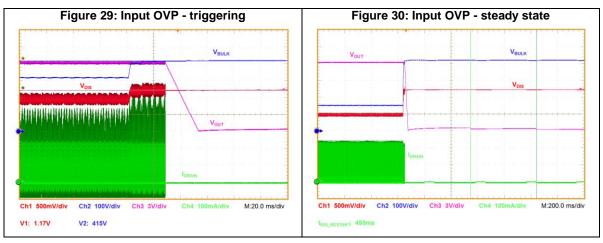
When the voltage across the DIS pin is externally pulled above the internal threshold V_{DIS_th} (1.2 V typical) for more than t_{DEB} (for instance, by means of a voltage divider connected to some higher voltage), the PWM is disabled and enters the auto-restart mode for $t_{DIS_RESTART}$ (500 ms typical). This allows an input overvoltage protection to be easily realized, just connecting a voltage divider from the rectifier input mains to the DIS pin.

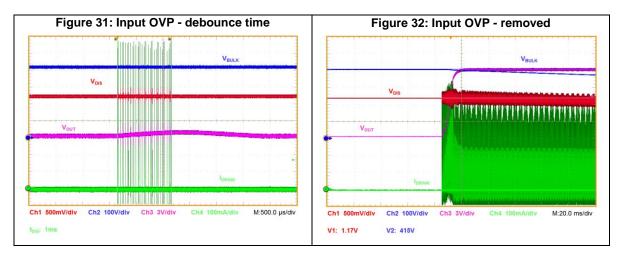
The resistors R1, R2, R3 and R4 (see Section 1.1: "Schematic diagram") can be used for this purpose.

The resistor values are selected according to the following formula:

$$R1 + R2 + R3 = \left(\frac{V_{OVP}}{V_{DIS_th}} - 1\right) \cdot R4$$

where V_{OVP} is the desired input overvoltage threshold.

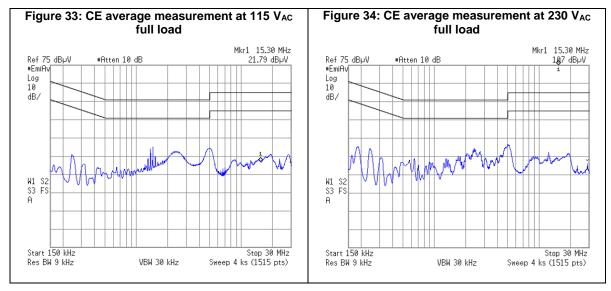

The additional steady state power consumption of this network is:


$$P_{DIS}(V_{INdc}) = \frac{(V_{INdc} - V_{DIS})^2}{R1 + R2 + R3} + \frac{V_{DIS}^2}{R4}$$

If the Disable function is not required, the DIS pin must be connected to GND (this is the default setting for the STEVAL-ISA197V1 evaluation board, which excludes the function).

For example, if R1=R2=R3=2.2 M Ω and R4=18.7 k Ω (C6=1 nF), the input overvoltage will be set at about 423 V_{DC}. As the input capacitor voltage range is 400 V_{DC} to check the effectiveness of the protection, C1 and C2 have been replaced by others with higher voltage range (450 V_{DC}).

The following figures show some relevant input overvoltage protection waveforms created via the DIS pin.

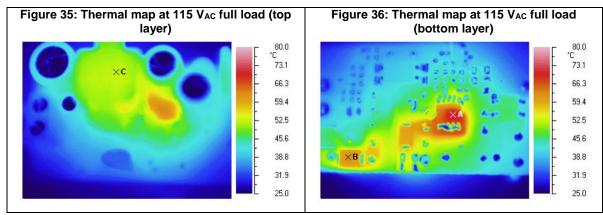


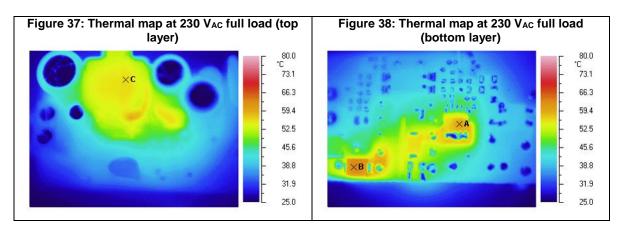
6 Conducted noise measurements

The VIPer114LS frequency jittering feature allows the spectrum to be spread over frequency bands, rather than being concentrated on a single frequency value. Especially when measuring conducted emissions with the average detection method, the level reduction can be several $dB\mu V$.

A pre-compliance test for the EN55022 (Class B) European normative was performed and average measurements of the conducted noise emissions at full load and nominal mains voltages are shown in the following figures.

In all test conditions, there is a good margin between the measurements and the corresponding limits.





7 Thermal tests

A thermal analysis of the board was performed using an IR camera, under full load condition, at the two nominal input voltages (115 V_{AC} and 230 V_{AC}).

The results are shown in the following figures and summarized in the table below.

Point	Tempera	iture (°C)	Reference	
Foint	115 V _{AC} 230 V _{AC}		Reference	
А	71	60	VIPer114LS	
В	62	63	Output diode	
С	54	58	Transformer	

8 Conclusions

A flyback converter has been described and characterized. Efficiency and low load performance have been highlighted and the bench results were good with very low input power under light load condition.

The efficiency performance has been compared with the requirements of the EC CoC and DoE regulation programs for external AC/DC adapters with highly positive results, where the measured active mode efficiency is always higher than the required minimum. Also, the EMI emissions are quite low, even if a low cost input filter has been used.

9 Evaluation board tools and documentation

The VIPer114LS evaluation board order code is STEVAL-ISA197V1.

Further information about this product is available in the VIPER11 datasheet at www.st.com.

10 Revision history

Table 11: Document revision history

Date	Version	Changes
24-Jul-2017	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

