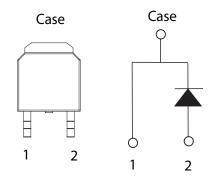


LSIC2SD065C08A 650 V, 8 A SiC Schottky Barrier Diode


Description

This series of silicon carbide (SiC) Schottky diodes has negligible reverse recovery current, high surge capability, and a maximum operating junction temperature of 175 °C. These diodes series are ideal for applications where improvements in efficiency, reliability, and thermal management are desired.

Features

- AEC-Q101 qualified
- Positive temperature coefficient for safe operation and ease of paralleling
- 175 °C maximum operating junction temperature
- Excellent surge capability
- Extremely fast, temperature-independent switching behavior
- Dramatically reduced switching losses compared to Si bipolar diodes

Circuit Diagram TO-252-2L (DPAK)

Applications

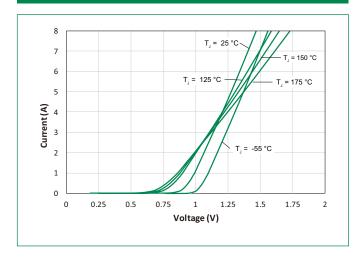
- Boost diodes in PFC or DC/DC stages
- Switch-mode power supplies
- Uninterruptible power supplies
- Solar inverters
- Industrial motor drives
- EV charging stations

Environmental

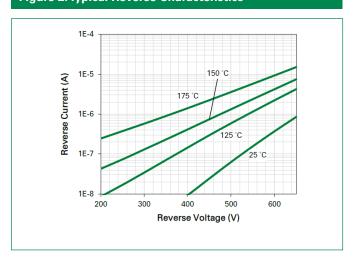
- Littelfuse "RoHS" logo = RoHS RoHS conform
- Littelfuse "HF" logo = **HF**Halogen Free
- Littelfuse "Pb-free" logo = Pb-free lead plating

Maximum Ratings

Characteristics	Symbol	Conditions	Value	Unit	
Repetitive Peak Reverse Voltage	V _{RRM}	-	650	V	
DC Blocking Voltage	V _R	T _J = 25 °C	650	V	
Continuous Forward Current		T _C = 25 °C	23		
	l _F	T _C = 135 °C	10.7	А	
		T _C = 150 °C	8		
Non-Repetitive Forward Surge Current	I _{FSM}	$T_{\rm C}$ = 25 °C, $T_{\rm P}$ = 10 ms, Half sine pulse	40	А	
Davida Dispiration	D	T _C = 25 °C	88	W	
Power Dissipation	P _{Tot}	T _C = 110 °C	38		
Operating Junction Temperature	T _J	-	-55 to 175	°C	
Storage Temperature	T _{STG}	-	-55 to 150	°C	
Soldering Temperature (reflow MSL1)	T _{sold}	-	260	°C	


Electrical Characteristics

	Symbol	2	Value				
Characteristics		Conditions	Min.	Тур.	Max.	Unit	
Forward Voltage	\/	I _F = 8 A, T _J = 25 °C	-	1.5	1.8	V	
	V _F	I _F = 8 A, T _J = 175 °C	-	1.85	-		
Reverse Current	I _R	$V_{R} = 650 \text{V}$, $T_{J} = 25 ^{\circ}\text{C}$	-	<1	50	^	
		$V_{R} = 650 \text{V} , T_{J} = 175 ^{\circ}\text{C}$	-	15	-	μΑ	
Total Capacitance		V _R = 1 V, f = 1 MHz	-	415	-		
	С	$V_{R} = 200 V, f = 1 MHz$	-	56	-	pF	
		$V_{R} = 400 \text{V}, f = 1 \text{MHz}$	-	41	-		
Total Capacitive Charge	O _c	$V_R = 400 \text{ V}, Q_C = \int\limits_0^{V_R} C(V)dV$	-	29	-	nC	


Footnote: T_J = +25 °C unless otherwise specified

Thermal Characteristics						
Characteristics	Symbol	Value	Unit			
Thermal Resistance	R _{euc}	1.7	°C/W			

Figure 1: Typical Foward Characteristics

Figure 2: Typical Reverse Characteristics

Figure 3: Power Derating

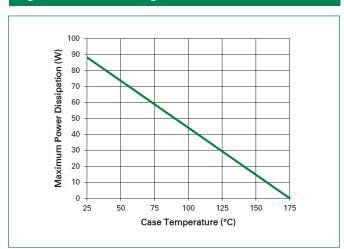


Figure 4: Current Derating

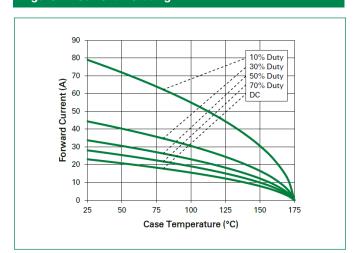


Figure 5: Capacitance vs. Reverse Voltage

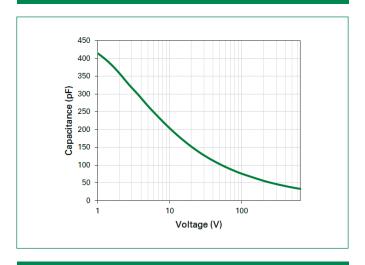


Figure 6: Capacitive Charge vs. Reverse Voltage

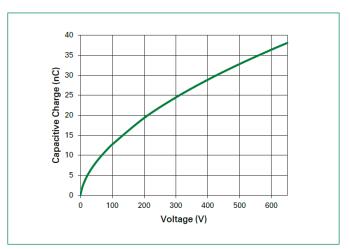


Figure 7: Stored Energy vs. Reverse Voltage

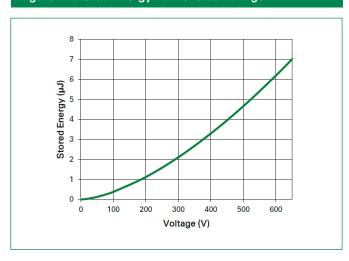
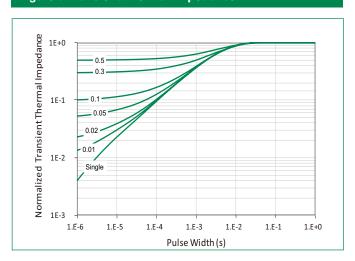
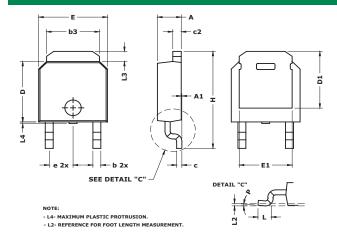
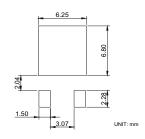
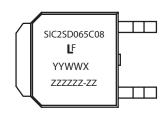




Figure 8: Transient Thermal Impedance



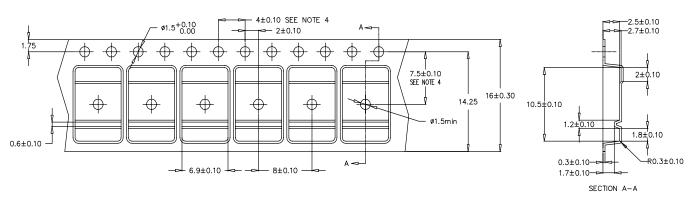
Dimensions TO-252-2L (DPAK)



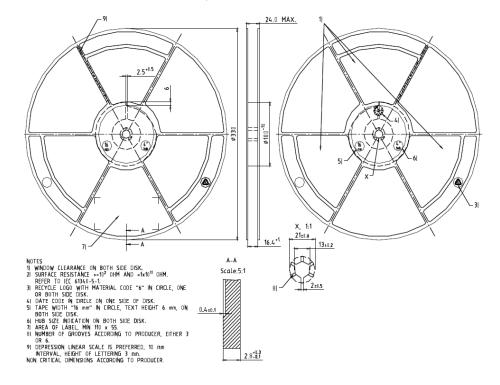
Recommended Solder Pattern Layout

Symbol		Inches		N	Millimeters	
Зуппон	Min	Nom	Max	Min	Nom	Max
А	0.085	0.090	0.095	2.16	2.29	2.41
A1	0	0.003	0.005	0	0.08	0.13
b	0.025	0.030	0.035	0.64	0.76	0.89
b3	0.195	0.200	0.215	4.95	5.08	5.46
С	0.018	0.020	0.024	0.46	0.51	0.61
C2	0.018	0.032	0.035	0.46	0.81	0.89
D	0.235	0.240	0.245	5.97	6.10	6.22
D1	0.205	-	-	5.21	-	-
Е	0.250	0.260	0.265	6.35	6.60	6.73
E1	0.170	-	-	4.32	-	-
е	0.090 BSC			2.29 BSC		
Н	0.370	0.387	0.410	9.40	9.83	10.41
L	0.040	0.045	0.050	1.02	1.14	1.27
L2	0.010 BSC			0.25 BSC		
L3	0.035	-	0.050	0.89	-	1.27
L4	0	-	0.006	0	-	0.15
Р	0°	-	8°	0°	-	8°

Part Numbering and Marking System


SIC = SiC Diode = Gen2 = Schottky Diode SD 065 = Voltage Rating (650 V) С = TO-252-2L (DPAK) = Current Rating (8 Å) 80 ΥY = Year $\mathsf{W}\mathsf{W}$ = Week = Special code

ZZZZZZ-ZZ = Lot Number


Packing Options

Part Number	Marking	Packing Mode	M.O.Q
LSIC2SD065C08A	SIC2SD065C08	Tape and Reel	2500

Carrier Tape & Reel Specification TO-252-2L (DPAK)

- Material: Black Conductive Polysterene
 10 sprocket hole pitch cumulative tolerance ± 0.20
 Camber not to exceed 1 mm in 100 mm.
 Pocket position relative to sprocket hole measured
 as true position of pocket, not pocket hole.
- 5. Device orientation: TRL (leads perpendicular to the sprocket)
- 6. General tolerance is \pm 0.10 mm unless otherwise specified.

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, Components intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.