

Fast Recovery Epitaxial Diode (FRED)

V _{RSM}	V_{RRM}	Туре
V	V	
1200	1200	DSEI 120-12AZ

10-	
30–	04

 $I_{FAVM} = 109 A$ $V_{RRM} = 1200 V$ $t_{rr} = 40 ns$

Symbol	Conditions	Maximum Rat	ings
I _{frms}	$T_{vJ} = T_{vJM}$	100	A
I _{favm} ①	$T_{c} = 60^{\circ}C$; rectangular, d = 0.5	109	A
I _{fav}	$T_{c} = 95^{\circ}C$; rectangular, d = 0.5	75	A
I _{frm}	$t_{P} < 10 \ \mu$ s; rep. rating, pulse width limited by T_{vJM}	1200	A
I _{FSM}	$T_{vJ} = 45^{\circ}C;$ t = 10 ms (50 Hz), sine	600	A
	t = 8.3 ms (60 Hz), sine	660	A
	$T_{VJ} = 150^{\circ}C; t = 10 \text{ ms}$ (50 Hz), sine	540	A
	t = 8.3 ms (60 Hz), sine	600	A
l²t	$T_{VJ} = 45^{\circ}C;$ t = 10 ms (50 Hz), sine	1800	A²s
	t = 8.3 ms (60 Hz), sine	1800	A²s
	$T_{vJ} = 150^{\circ}C; t = 10 \text{ ms}$ (50 Hz), sine	1450	A²s
	t = 8.3 ms (60 Hz), sine	1500	A²s
T _{VJ}		-40+150	0°
T _{VJM}		150	0°
T _{stg}		-40+150	0°
P _{tot}	$T_c = 25^{\circ}C$	357	W
M _d	mounting torque	0.81.2	Nm
Weight	typical	6	g

Symbol	Conditions Characteristic Values		alues	
		typ.	max.	
I _R	$ \begin{array}{ll} V_{\rm R} = V_{\rm RRM} & T_{\rm VJ} = \ 25^{\circ}{\rm C} \\ V_{\rm R} = 0.8 {\rm \cdot} V_{\rm RRM} & T_{\rm VJ} = \ 25^{\circ}{\rm C} \\ V_{\rm R} = 0.8 {\rm \cdot} V_{\rm RRM} & T_{\rm VJ} = \ 125^{\circ}{\rm C} \end{array} $		3 1.5 20	mA mA mA
V _F	$I_{F} = 70 \text{ A} \qquad T_{VJ} = 150^{\circ}\text{C} \\ T_{VJ} = 25^{\circ}\text{C}$		1.55 1.8	V V V
ν _{τ0} r _τ	for power-loss calculations only $T_{vJ} = T_{vJM}$		1.2 4.6	V mΩ
R _{thJC} R _{thCH} R _{thJA}		0.15	0.35 35	K/W K/W K/W
t _{rr}	$I_F = 1 \text{ A}; \text{-di/dt} = 200 \text{ A/}\mu\text{s}; V_R = 30 \text{ V}; T_{VJ} = 25^{\circ}\text{C}$	40	60	ns
I _{RM}	$V_{\textrm{\tiny R}}$ = 350 V; I_{\textrm{\tiny F}} = 75 A; -di_{\textrm{\tiny F}}/dt = 200 A/µs L \leq 0.05 µH; T $_{\textrm{\tiny VJ}}$ = 100°C		30	A
① Chip capa	bility Data according to IEC 60747			

IXYS reserves the right to change limits, test conditions and dimensions.

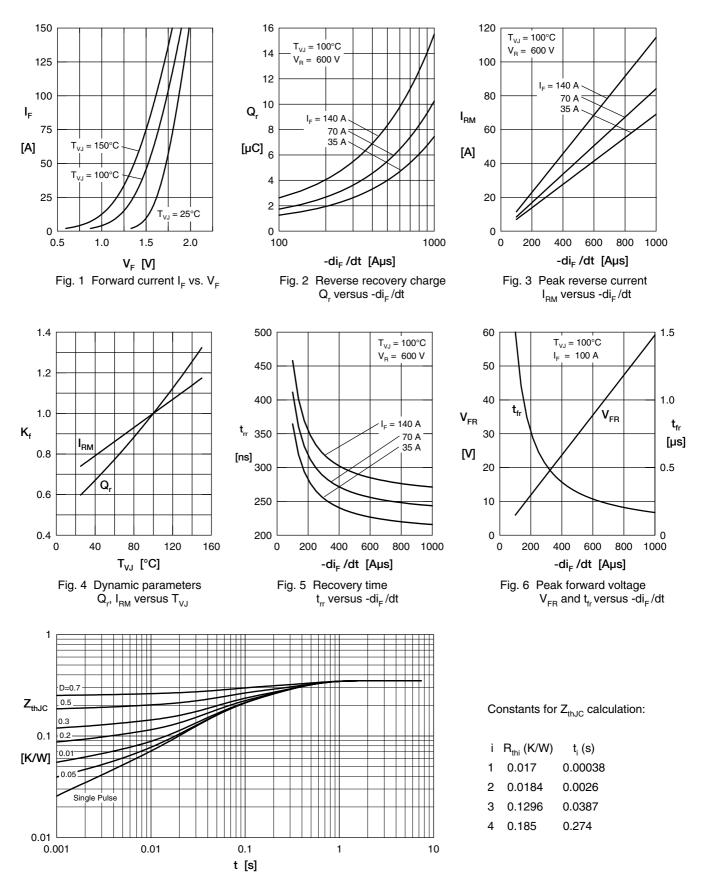
© 2016 IXYS All rights reserved

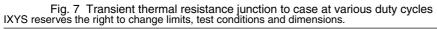
Features

- International standard package JEDEC TO-268AA
- Planar passivated chips
- Very short recovery time
- Extremely low switching losses
- Low I_{RM}-values
- Soft recovery behaviour
- Epoxy meets UL 94V-0

Applications

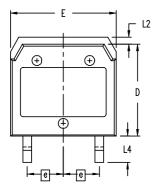
- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

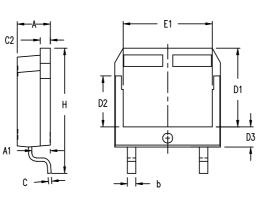

Advantages


- High reliability circuit operation
- Low voltage peaks for reduced
- protection circuitsLow noise switching
- Low hoise sv
 Low losses
- Operating at lower temperature or space saving by reduced cooling

DSEI120-12AZ

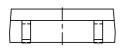
DSEI120-12AZ

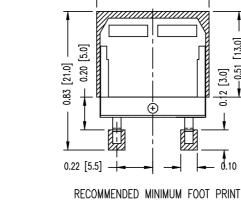




© 2016 IXYS All rights reserved

Dimensions TO-268AA


0.67 [17.0]


[13.0]

0.51

d.10 [2.5]

5 Ċ

Dim	Millimeter		Inches	
	min	max	min	max
Α	4.90	5.10	0.193	0.201
A1	2.70	2.90	0.106	0.114
A2	0.02	0.25	0.001	0.010
b	1.15	1.45	0.045	0.057
С	0.40	0.65	0.016	0.026
C2	1.45	1.60	0.057	0.063
D	13.80	14.00	0.543	0.551
D1	11.80	12.10	0.465	0.476
D2	7.50	7.80	0.295	0.307
D3	2.90	3.20	0.114	0.126
Е	15.85	16.05	0.624	0.632
E1	13.30	13.60	0.524	0.535
е	5.450 BSC		0.215 BSC	
Н	18.70	19.10	0.736	0.752
L	1.70	2.00	0.067	0.079
L2	1.00	1.15	0.039	0.045
L3	0.250 BSC		0.010 BSC	
L4	3.80	4.10	0.150	0.161

L3 A2

Terms & Conditions of usage The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend - to perform joint risk and quality assessments;

the conclusion of quality agreements;
 to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.

© 2016 IXYS All rights reserved

20160530a