
Product Features:

Low Jitter, Non-PLL Based Output Clipped Sinewave Analog Compensation Available $\pm\,0.5$ ppm Stability

Applications: GPS

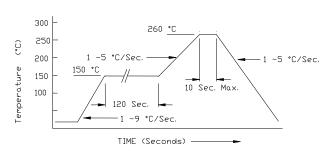
GPS Sonet /SDH 802.11 / Wifi T1/E1, T3/E3

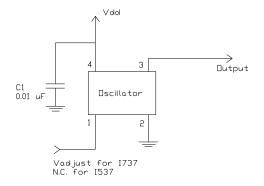
Frequency	10Mhz to 52 Mhz	
Frequency Tolerance @ 25° C	± 2.0 ppm after second reflow	
Frequency Stability		
Vs Temperature	See Frequency Stability Table	
Vs Supply Voltage (± 5%)	± 0.2 ppm Max.	
Vs Load (10%)	±.0.2 ppm Max.	
Output Level		
Clipped Sinewave	0.8 V p-p Min.	
Output Load		
Clipped Sinewave	10K Ohms / 10 pF	
Frequency Slope	± 0.1 ppm /° C	
(2C steps from -20° C to +70° C)		
Start Time (90% of Vp-p)	3.0 mS Max.	
Aging	± 1 ppm / Year Max.	
Supply Voltage	See Supply Voltage Table , tolerance $\pm5\%$	
Current	1.5 mA Max	
Current	1.5 IIIA Wax	
Voltage Control (I747)	1.5 VDC ± 1.0 VDC, ± 5.0 ppm Min.	
Operating	See Operating Temperature Table	
Storage	-40° C to +85° C	
Phase Noise (typical)	-87 dBc/Hz @ 10 Hz	
, , , , , ,	-112 dBc/Hz @ 100 Hz	
	-135 dBc/Hz @ 1KHz	
	-145 dBc/Hz @ 10 Khz	
	1	

	Part Number Guide	Sample Part Number: I547-1Q3-20.000) Mhz	
Package	Operating Temperature	FrequencyStability vs Temperature	Supply Voltage	Frequency
I547 (Clipped Sinewave TCXO) I747 (Clipped Sinewave TCVCXO)	7 = 0° C to +50° C	**Y = ±0.5 ppm	3 = 3.3 V	
	1 = 0° C to +70° C	**N = ±1.0 ppm	7 = 3.0 V	
	3 = -20° C to +70° C	**O = ±1.5 ppm	2 = 2.7 V	
	5 = -30° C to +85° C	**P = ±2.0 ppm	1 = 1.8 V	- 20.000 MHz
	2 = -40° C to +85° C	Q = ±2.5 ppm		
		R = ±3.0 ppm		
		$J = \pm 5.0 \text{ ppm}$		

NOTE: A 0.01 µF bypass capacitor is recommended between Vcc (pin 4) and GND (pin 2) to minimize power supply noise.

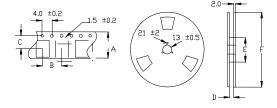
Rev: 06/18/15_J


^{**} Not available for all temperature ranges.



Pb Free Solder Reflow Profile:

Typical Application:



Package Information:

MSL = N.A. (package does not contain plastic, storage life is unlimited under normal room conditions). Termination = e4 (Au over Ni over W base metallization).

Tape and Reel Information:

Quantity per Reel	1000
Α	8 +/3
В	4 +/2
С	3.5 +/2
D	9 +/-1 or 12 +/-3
E	60 / 80
F	180

Environmental Specifications

Thermal Shock	MIL-STD-883, Method 1011, Condition A
Moisture Resistance	MIL-STD-883, Method 1004
Mechanical Shock	MIL-STD-883, Method 2002, Condition B
Mechanical Vibration	MIL-STD-883, Method 2007, Condition A
Resistance to Soldering Heat	J-STD-020C, Table 5-2 Pb-free devices (except 2 cycles max)
Hazardous Substance	Pb-Free / RoHS / Green Compliant
Solderability	JESD22-B102-D Method 2 (Preconditioning E)
Terminal Strength	MIL-STD-883, Method 2004, Test Condition D
Gross Leak	MIL-STD-883, Method 1014, Condition C
Fine Leak	MIL-STD-883, Method 1014, Condition A2, R1=2x10-8 atm cc/s
Solvent Resistance	MIL-STD-202, Method 215

Marking

Line 1: I-Date Code (yww) Line 2: Frequency

PROPRIETARY AND CONFIDENTIAL

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION, AND SUCH INFORMATION MAY NOT BE DISCLOSED TO OTHERS FOR ANY PURPOSE NOR USED FOR MANUFACTURING PURPOSES WITHOUT WRITTEN PERMISSION FROM ILSI America.

Rev: 06/18/15 J

^{*}Units are backward compatible with 240C reflow processes