

	Overload relays
7/71	General data
	SIRIUS 3RU2 thermal overload relays
7/78	3RU2 for standard applications INEW
7/88	Accessories NEW
	SIRIUS 3RB3 electronic overload relays
7/90	3RB30, 3RB31 for standard applications NEW
7/100	Accessories Naw
	SIRIUS 3RB2 electronic overload relays
7/102	3RB20, 3RB21 for standard applications
7/112	Accessories for 3RB20, 3RB21
7/114	3RB22, 3RB23 for high-feature applications
7/122	3RB24 for IO-Link for high-feature applications
7/129	Current measuring modules for 3RB22, 3RB23, 3RB24
7/133	Accessories for 3RB22, 3RB23, 3RB24
	Note:
	The 3RV1, 3RU1 and 3RB2 devices (sizes S00/S0 to S12) can be found
	- in the Catalog Add-On IC 10 AO - 2016 at the Information and Download Center - in the interactive Catalog CA 01 - in the Industry Mall
	Conversion tool, e.g. from - 3RV1 to 3RV2 - 3RU11 to 3RU21 - 3RB20/3RB21 to 3RB30/3RB31 see www.siemens.com/sirius/conversion-tool

Protection Equipment

Introduction

Overview

- System protection
- Motor protection
- Motor protection with overload relay function

- Transformer protection

Size

\checkmark Has this function or can use this accessory
-- Does not have this function or cannot use this accessory

1) For symmetrical loading of the three phases.
${ }^{2)}$ With molded-plastic enclosure 500 V AC. For DC applications, see "Techni cal Specifications" \rightarrow "DC Short-Circuit Breaking Capacity", page 7/17.
${ }^{3)}$ For overload protection of the motors, appropriate overload relays must be used.
2) According to UL 489 at $480 \mathrm{Y} / 277 \mathrm{~V} \mathrm{AC}: 65 \mathrm{kA}$ or 50 kA

Type	3RV1611-0BD10	3RV1611-1.G14
SIRIUS 3RV1 motor starter protectors/circuit breakers		
Applications		
- System protection	--	--
- Motor protection	--	--
- Motor protection with overload relay function	--	--
- Starter combinations	--	--
- Transformer protection	--	--
- Fuse monitoring	\checkmark	--
- Voltage transformer circuit breakers for distance protection	--	\checkmark
Size	SOO	SOO
Rated current $I_{\text {n }}$		
- Size SOO	0.2	Up to 3
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ acc. to IEC	690 AC ${ }^{1)}$	400 AC
Rated frequency	50/60	$16^{2} / 3 \ldots 60$
Trip class	--	--
Thermal overload releases	0.2	$1.4 \ldots 3$
Electronic releases A multiple of the rated current	6 times	$4 \ldots 7$ times
Short-circuit breaking capacity $I_{\text {cu }}$ at 400 V AC	100	50
Pages	7/60	7/61
Accessories		
For sizes	S00	S00
Pages	7/60, 7/61	
\checkmark Has this function or can use this accessory -- Does not have this function or cannot use this a	sory	With molded-plastic enclosure 500 V AC. For DC applications, see "Technical Specifications" \rightarrow "DC Short-Circuit Breaking Capacity", page 7/18.

Protection Equipment

Introduction

Applications

- Motor protection
- Starter combinations

Switching capacity

Type	3RV1063	3RV1073	3RV1083	
Rated current $\boldsymbol{I}_{\mathbf{n}}$	A	$100 \ldots 200$	400	630

Rated operational
voltage U_{e} acc. to IEC

| Rated frequency | $\mathrm{Hz} 50 / 60$ |
| :--- | ---: | :--- |
| Trip class | CLASS 10A $, 10,20,30$ |

Electronic releases

A multiple of the rated current

--
Standard switching capacity

3RV1063	3RV1073	3RV1083
$100 \ldots 200$	400	630

Standard switching capacity

3RV1353 3RV1363 3RV1373 3RV1383
$1 \ldots 32 \quad 100 \ldots 250400,630$ 630, 800
690 AC
50/60
--1)
Without ${ }^{1)}$

7/68

Accessories

For molded case motor starter protectors	3RV1063	3RV1073	3RV1083	3RV1353	3RV1363	3RV1373	3RV1383	3RV1364	3RV1374
Auxiliary switches	\checkmark								
Undervoltage releases	\checkmark								
Shunt releases	\checkmark								
Rotary operating mechanisms	\checkmark								
Connection methods - Extended terminals on the front - Cable terminals on the front - Rear terminals									\checkmark \checkmark \checkmark

Pages

7/69, 7/70
\checkmark Has this function or can use this accessory
-- Does not have this function or cannot use this accessory

1) For overload protection of the motors, appropriate overload relays must be used.

Thermal overload relays for standard applications 3RU21

Electronic overload relays for standard applications 3RB30

3RB31

\boldsymbol{J}^{11}	
\checkmark	
\checkmark	
\checkmark	
\checkmark	
SOO, SO, S2, S3	

$\boldsymbol{J}^{1)}$	\boldsymbol{J}^{11}
\boldsymbol{J}	\checkmark
\checkmark	\checkmark
--	--
-	--
SOO, SO, S2, S3	SOO

Size contactor
Rated operational current I_{e}

- Size S00

Up to 16
Up to 40
Up to 80
Up to 100
690 AC
50/60
CLASS 10, 10A
Trip class
Thermal overload releases

Electronic overload releases

Pages

Accessories

For sizes

Terminal supports for stand-alone installation
Mechanical RESET
Cable releases for RESET
Electrical remote RESET
Terminal covers

- For box terminals

Sealable covers for setting knobs

Pages

\checkmark Has this function or can use this accessory
-- Does not have this function or cannot use this accessory

Up to $16 \quad$ Up to 16
Up to $40 \quad$ Up to 40
Up to $80 \quad$ Up to 80
Up to $115 \quad$ Up to 115
690 AC 690 AC
50/60
CLASS 10E, 20E
50/60
CLASS 5E, 10E, 20E, 30E (adjustable)

$0.1 \ldots 0.4$ to	$0.1 \ldots 0.4$ to
$32 \ldots 115$	$32 \ldots 115$
$7 / 97,7 / 98$	$7 / 99$

Protection Equipment

Introduction

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

Overview

More information

Home page, see www.siemens.com/sirius-circuit-breaker
Industry Mall, see www.siemens.com/product?3RV2
Conversion tool, e.g. from 3RV1 to 3RV2, see
www.siemens.com/sirius/conversion-tool

Application Manual "SIRIUS Controls with IE3/IE4 Motors", see
 https://support.industry.siemens.com/cs/ww/en/view/94770820
 System Manual "SIRIUS - System Overview", see

https://support.industry.siemens.com/cs/ww/en/view/60311318
Manual "SIRIUS - SIRIUS 3RV2 Motor Starter Protectors", see
https://support.industry.siemens.com/cs/ww/en/view/60279172
Certificates, see https://support.industry.siemens.com/cs/ww/en/ps/16245/cert
Accessories, see page 7/37 onwards.

The following illustration shows 3RV2 motor starter protectors/circuit breakers with the accessories which can be mounted for the sizes S00 to S3, see also "Introduction" \rightarrow "Overview", page 7/2.

Mountable accessories for SIRIUS 3RV2 motor starter protectors/circuit breakers

SIRIUS motor starter protector with spring-type terminals, size SO (left) and SIRIUS motor starter protector with screw terminals, size SOO (right)

The SIRIUS 3RV2 motor starter protectors/circuit breakers are compact, current limiting motor starter protectors/circuit breakers which are optimized for load feeders. The motor starter protectors/circuit breakers are used for switching and protecting three-phase motors of up to $55 / 45 \mathrm{~kW}$ at 400 V AC and for other loads with rated currents of up to 100 A .

The new 3RV2 motor starter protectors/circuit breakers are usually approved according to IEC and UL/CSA. According to UL 508/UL 60947-4-1, the 3RV2 motor starter protectors/circuit breakers in sizes S00 to S3 are approved as:

- "Manual Motor Controllers"
- "Manual Motor Controllers" for "Group Installations"
- "Manual Motor Controllers Suitable for Tab Conductor Protection in Group Installations"
- "Self-Protected Combination Motor Controllers (Type E)" Please note that for this approval the 3RV20 motor starter protectors must be equipped with additional infeed terminals or phase barriers. For more information, see "Accessories" on page 7/45.
Corresponding short-circuit values, see pages $7 / 10$ to $7 / 16$
The 3RV27 and 3RV28 are approved as circuit breakers according to UL 489; they are a special version of the 3RV2 motor starter protectors.

Motor Starter Protectors/Circuit Breakers

SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Type of construction

The 3RV2 motor starter protectors are available in four sizes:

- Size SOO - width 45 mm max. rated current 16 A , at 400 V AC suitable for three-phase motors up to 7.5 kW
- Size S0 - width 45 mm, max. rated current 40 A at 400 V AC suitable for three-phase motors up to 18.5 kW
- Size S2 - width 55 mm, max. rated current 80 A , at 400 V AC suitable for three-phase motors up to 37 kW
- Size S3 - width 70 mm , max. rated current 100 A , at 400 V AC suitable for three-phase motors up to $45 / 55 \mathrm{~kW}$

Circuit breakers acc. to UL 489

The 3RV27 and 3RV28 circuit breakers are available in two or three sizes

- Size SOO - width 45 mm max. rated current 15 A , at $480 \mathrm{Y} / 277 \mathrm{~V}$ AC
- Size S0 - width 45 mm max. rated current 22 A , at $480 \mathrm{Y} / 277 \mathrm{~V} \mathrm{AC}$
- Size S3 - width 70 mm max. rated current 70 A , at $480 \mathrm{Y} / 277 \mathrm{VAC}$

Connection methods

The 3RV2 motor starter protectors/circuit breakers can be supplied with screw terminals and spring-type terminals.

(7) Screw terminals
 O Spring-type terminals
 The terminals are indicated in the corresponding tables by the symbols shown on orange backgrounds.

Use in hazardous areas

The 3RV20 motor starter protectors for motor protection in sizes SOO and SO have certification in accordance with both the European explosion protection directive ATEX and the international explosion protection standard (IECEx). Size S3 available on request.

In accordance with the European directive (ATEX), the 3RV20 are able to switch and protect explosion-proof motors of type of protection "Increased Safety EEx e"

In accordance with the international guideline (IECEx), the 3RV20 are able to switch and protect motors of the types "Increased Safety Ex e" or "Flameproof enclosure Ex d"

Article No. scheme

Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders please use the article numbers quoted in the selection and ordering data.

Benefits

Advantages through energy efficiency

Overview of the energy management process

We offer you a unique portfolio for industrial energy management, using an energy management system that helps to optimally define your energy needs. We split up our industrial energy management into three phases - identify, evaluate, and realize - and we support you with the appropriate hardware and software solutions in every process phase.
The innovative products of the SIRIUS industrial controls portfolio can also make a substantial contribution to a plant's energy efficiency (see www.siemens.com/sirius/energysaving)

3RV2 motor starter protectors/circuit breaker contribute to energy efficiency throughout the plant as follows:

- Minimization of energy losses through optimization of the bimetal trip units
- Reduction of inherent power loss
- Less heating of the control cabinet
- Smaller control cabinet air conditioners can be used

Application

Operating conditions

3RV2 motor starter protectors/circuit breakers are suitable for use in any climate. They are intended for use in enclosed rooms in which no severe operating conditions (such as dust, caustic vapors, hazardous gases) prevail. When installed in dusty and damp areas, suitable enclosures must be provided.
3RV2 motor starter protectors/circuit breakers can optionally be fed from the top or from below.

The permissible ambient temperatures, the maximum switching capacities, the tripping currents and other boundary conditions can be found in the technical specifications and tripping characteristics, see Manual.
3RV2 motor starter protectors/circuit breakers are suitable for operation in IT systems (IT networks). In this case, the different short-circuit breaking capacity in the IT system must be taken into account, see page 7/12.
Since operational currents, starting currents and current peaks are different even for motors with identical power ratings due to the inrush current, the motor ratings in the selection tables are only guide values. The specific rated and startup data of the mo tor to be protected is always paramount to the choice of the most suitable motor starter protector/circuit breaker. This also applies to motor starter protectors for transformer protection.

Possible uses

The 3RV motor starter protectors/circuit breakers can be used:

- For short-circuit protection
- For motor protection (also with overload relay function)
- For system protection
- For short-circuit protection for starter combinations
- For transformer protection
- As main and EMERGENCY-STOP switches
- For operation in IT systems (IT networks)
- For switching of DC currents
- In areas subject to explosion hazard (ATEX)
- As circuit breakers according to UL 489 (3RV27 and 3RV28)
- For fuse monitoring
- For distance protection

Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

Note:

For the use of 3RV2 motor starter protectors/circuit breakers in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.

For more information, see Preface on page 7.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
General data
Technical specifications

More information

System Manual "SIRIUS - System Overview", see
https://support. industry. siemens.com/cs/ww/en/view/60311318
Configuration manual "Configuring SIRIUS Innovations -
Selection Data for Fuseless and Fused Load Feeders", see
https://support.industry.siemens.com/cs/ww/en/view/39714188
Manual "SIRIUS - SIRIUS 3RV2 Motor Starter Protectors", see
https://support.industry.siemens.com/cs/ww/en/view/60279172

Technical specifications, see

https://support.industry.siemens.com/cs/ww/en/ps/16245/td
UL reports of the individual devices, see www.siemens.com/sirius/manuals

Short-circuit breaking capacity $I_{\text {cu }}, I_{\text {cs }}$ according to IEC 60947-2

The table shows the rated ultimate short-circuit breaking capacity I_{cu} and the rated service short-circuit breaking capacity $I_{\text {cs }}$ of the 3RV2 motor starter protectors/circuit breakers with different operating voltages dependent on the rated current I_{n} of the motor starter protectors/circuit breakers.
Power can be supplied to the motor starter protectors/circuit breakers via the terminals at the top or at the bottom without restricting the rated data. If the short-circuit current at the place of installation exceeds the rated short-circuit breaking capacity of the motor starter protector/circuit breaker as specified in the table, a back-up fuse is required. It is also possible to install an
upstream motor starter protector/circuit breaker with a limiter function.
The maximum rated current of this back-up fuse is indicated in the tables. The rated ultimate short-circuit breaking capacity then applies as specified on the fuse.

Fuseless design
Motor starter protector/contactor assemblies for short-circuit currents up to 150 kA can be ordered as 3RA2 fuseless load feeders, see page 8/4 onwards.

Motor starter protectors / circuit breakers	Rated currentI_{n}	Up to 240 V AC ${ }^{1}$)			$\begin{aligned} & \text { Up to } 400 \mathrm{VAC}{ }^{1)} / \\ & 415 \mathrm{VAC} \end{aligned}$			$\begin{aligned} & \text { Up to } 440 \vee A C^{1) /} \\ & 460 \vee A C^{2)} \end{aligned}$			$\begin{aligned} & \text { Up to } 500 \mathrm{VAC}{ }^{1)} \\ & 525 \mathrm{VAC} \end{aligned}$			Up to 690 V AC ${ }^{1}$)		
		$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse (gG)	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $\left.(\mathrm{gG})^{3}\right)$	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $\left.(\mathrm{gG})^{3}\right)$	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $(\mathrm{gG})^{3}$	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $(g G)^{3(4)}$
Type	A	kA	kA	A												
Size S00																
3RV2.11	0.16 ... 1.6	100	100	--	100	100	--	100	100	--	100	100	--	100	100	--
	2; 2.5	100	100	--	100	100	--	100	100	--	100	100	--	10	10	25
	3.2	100	100	--	100	100	--	100	100	--	100	100	--	10	10	32
	4; 5	100	100	--	100	100	--	100	100	--	100	100	--	6	4	32
	6.3	100	100	--	100	100	--	100	100	--	100	100	--	6	4	50
	8	100	100	--	100	100	--	50	50	63	42	42	63	6	4	50
	10	100	100	--	100	100	--	50	50	80	42	42	63	6	4	50
	12.5	100	100	--	100	100	--	50	50	80	42	42	80	6	4	63
	16	100	100	--	55	30	100	50	12.5	80	10	5	80	4	4	63
3RV1611-0BD10	0.2	100	100	--	100	100	--	100	100	--	100	100	--	100	100	--
Size S0																
3RV2.21	$0.16 \ldots 1.6$	100	100	--	100	100	--	100	100	--	100	100	--	100	100	--
	2; 2.5	100	100	--	100	100	--	100	100	--	100	100	--	10	10	25
	3.2	100	100	--	100	100	--	100	100	--	100	100	--	10	10	32
	4; 5	100	100	--	100	100	--	100	100	--	100	100	--	6	4	32
	6.3	100	100	--	100	100	--	100	100	--	100	100	--	6	4	50
	8	100	100	--	100	100	--	50	50	63	42	42	63	6	4	50
	10	100	100	--	100	100	--	50	50	80	42	42	63	6	4	50
	12.5	100	100	--	100	100	--	50	50	80	42	42	80	6	4	63
	16	100	100	--	55	25	100	50	12.5	80	10	5	80	4	2	63
	20	100	100	--	55	25	125	50	10	80	10	5	80	4	2	63
	22; 25	100	100	--	55	25	125	50	10	100	10	5	80	4	2	63
	28; 32	100	100	--	55	25	125	30	10	125	10	5	100	4	2	100
	36; 40	100	100	--	20	10	125	12	8	125	6	3	100	3	2	100

-- No back-up fuse required, since short-circuit resistant up to 100 kA

1) 10% overvoltage.
2) 5% overvoltage.
${ }^{3}$) Back-up fuse only required if short-circuit current at the place of installation is $>I_{\mathrm{cu}}$.
${ }^{4)}$ Alternatively, fuseless limiter combinations for $690 \vee A C$ can also be used.

Motor starter protectors/ circuit breakers	Rated current I_{n}	Up to 240 V AC ${ }^{1}$			$\begin{aligned} & \text { Up to } 400 \mathrm{VAC}{ }^{11 /} \\ & 415 \mathrm{~V} \mathrm{AC}^{2)} \end{aligned}$			$\begin{aligned} & \text { Up to } 440 \mathrm{VAC}{ }^{1)} \\ & \left.460 \mathrm{~V} \mathrm{AC}^{2}\right) \end{aligned}$			$\begin{aligned} & \text { Up to } 500 \mathrm{VAC}{ }^{1) /} \\ & 525 \mathrm{~V} A C^{2)} \end{aligned}$			Up to 690 V AC ${ }^{1}$)		
		$I_{\text {Cu }}$	$I_{\text {CS }}$	Max. fuse (gG)	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $(\mathrm{gG})^{3}$	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $\left.(\mathrm{gG})^{3}\right)$	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $(\mathrm{gG})^{3}$	$I_{\text {cu }}$	$I_{\text {CS }}$	Max. fuse $(\mathrm{gG})^{3 / 4)}$
Type	A	kA	kA	A												
Size S2																
3RV2.31	14; 17	100	100	--	65	30	100	50	25	100	12	6	63	5	3	63
	20	100	100	--	65	30	100	50	25	100	12	6	80	5	3	80
	25	100	100	--	65	30	100	50	15	100	12	6	80	5	3	80
	32; 36	100	100	--	65	30	125	50	15	125	10	5	100	4	2	100
	40; 45	100	100	--	65	30	160	50	15	125	10	5	100	4	2	100
	52	100	100	--	65	30	160	50	15	125	10	5	125	4	2	125
	59; 65	100	100	--	65	30	160	50	15	160	8	4	125	4	2	125
	73; 80	100	100	--	65	30	200	50	15	200	8	4	160	4	2	125
Size S2, with increased switching capacity																
3RV2.32	14; 17	100	100	--	100	50	--	65	30	100	18	10	63	8	5	63
	20; 25	100	100	--	100	50	--	65	30	100	18	10	80	8	5	80
	$32 . . .45$	100	100	--	100	50	--	65	30	125	15	8	100	6	4	100
	52	100	100	--	100	50	--	65	30	125	15	8	125	6	4	125
	59; 65	100	100	--	100	50	--	50	15	160	10	5	125	6	4	125
	73; 80	100	100	--	100	50	--	50	15	200	10	5	160	6	4	125
Size S3																
3RV2.41	$40 \ldots 100$	On request														
Size S3, with increased switching capacity																
3RV2.42/ 3RV2742 ${ }^{\text {5 }}$ ($40 \ldots 100$		On request														
-- No back-up fuse required, since short-circuit resistant up to 100 kA 1) 10% overvoltage. 2) 5% overvoltage. 3) Back-up fuse only required if short-circuit current at the place of installation is $>I_{\mathrm{cu}}$. 4) Alternatively, fuseless limiter combinations for 690 V AC can also be used. 5) The values for the 3RV2742 circuit breakers have been tested only up to $400 \mathrm{~V} / 415 \mathrm{~V}$ AC.																

Motor Starter Protectors/Circuit Breakers

SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Short-circuit breaking capacity $I_{\text {cuIT }}$ in the IT system (IT network) according to IEC 60947-2

3RV2 motor starter protectors/circuit breakers are suitable for use in IT systems. The values of I_{cu} and I_{cs} apply for the threepole short circuit. In the case of a double ground fault in different phases at the input and output side of a motor starter protector/circuit breaker, the special short-circuit breaking capacity $I_{\text {cult }}$ applies. The specifications in the table below apply to 3RV2 motor starter protectors/circuit breakers.

If the short-circuit current at the place of installation exceeds the motor starter protector/circuit breaker's specified rated shortcircuit breaking capacity, you will need to use a back-up fuse. The maximum rated current of this back-up fuse is indicated in the tables. The rated short-circuit breaking capacity then applies as specified on the fuse.

Motor starter protectors/ circuit breakers	Rated current $I_{\text {n }}$	Up to 240 V AC ${ }^{1}$)		$\begin{aligned} & \text { Up to } 400 \mathrm{VAC}{ }^{11} \text { / } \\ & 415 \mathrm{VAC}^{2)} \end{aligned}$		$\begin{aligned} & \text { Up to } 440 \mathrm{VAC}{ }^{1)} \\ & 460 \mathrm{~V} C^{2)} \end{aligned}$		$\begin{aligned} & \text { Up to } 500 \mathrm{VAC}{ }^{1)} \text { / } \\ & 525 \mathrm{VAC}^{2)} \end{aligned}$		Up to 690 V AC ${ }^{1+5)}$	
		$I_{\text {CulT }}$	Max. fuse $(\mathrm{gG})^{3}$	$I_{\text {CulT }}$	Max. fuse $(\mathrm{gG})^{3 / 4)}$	$I_{\text {Cult }}$	Max. fuse $(\mathrm{gG})^{3}$	$I_{\text {CuIT }}$	Max. fuse $(\mathrm{gG})^{3}$	cult	$(\mathrm{gG})^{3}$
Type	A	kA	A								
Size S00											
3RV2.11	$0.16 \ldots 0.4$	100	--	100	--	100	--	100	--	100	--
	0.5	100	--	100	--	100	--	100	--	0.5	4
	0.63; 0.8	100	--	100	--	100	--	100	--	0.5	6
	1	100	--	100	--	2	10	2	10	1.5	10
	1.25	100	--	100	--	2	16	2	16	1.5	16
	1.6	100	--	100	--	2	20	2	20	1.5	16
	2; 2.5	100	--	8	25	2	25	2	25	1.5	20
	3.2	100	--	8	32	2	32	2	32	1.5	25
	4; 5	100	--	4	32	1.5	32	1.5	32	1.5	25
	$6.3 ; 8$	100	--	4	50	1	40	1	40	1	35
	10	100	--	4	50	1	40	1	40	1	40
	12.5	100	--	4	63	1	50	1	50	1	40
	16	55	80	4	63	1	50	1	50	1	40
3RV1611-0BD10	0.2	100	--	100	--	--	--	100	--	100	--
Size S0											
3RV2.21	$0.16 \ldots 0.4$	100	--	100	--	100	--	100	--	100	--
	0.5	100	--	100	--	100	--	100	--	0.5	4
	0.63; 0.8	100	--	100	--	100	--	100	--	0.5	6
	1	100	--	100	--	2	10	2	10	1.5	10
	1.25	100	--	100	--	2	16	2	16	1.5	16
	1.6	100	--	100	--	2	20	2	20	1.5	16
	2; 2.5	100	--	8	25	2	25	2	25	1.5	20
	3.2	100	--	8	32	2	32	2	32	1.5	25
	4; 5	100	--	4	32	1.5	32	1.5	32	1.5	25
	$\text { 6.3; } 8$	100	--	4	50	1	40	1	40	1	35
	10	100	--	4	50	1	40	1	40	1	40
	12.5	100	--	4	63	1	50	1	50	1	40
	16	55	80	4	63	1	50	1	50	1	40
	20... 25	55	80	4	63	1	50	1	50	1	50
	28; 32	55	80	2	63	1	63	1	63	1	63
	36; 40	20	80	2	63	1	63	1	63	1	63
					3) Back-up fuse only required if short-circuit current at installation location is						
-- No back-up fuse required, since short-circuit resistant up to 100 kA 1) 5% overvoltage					$>I_{\text {CulT }}$.						
5 \% overvoltage. 2) Without overvoltage.					4) Alternatively, fuseless limiter combinations for 690 VAC can also be used. 5) Overvoltage category II applies for applications in IT systems $>600 \mathrm{~V}$.						

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Motor starter protectors/ circuit breakers	Rated current $I_{\text {n }}$	Up to 240 V AC ${ }^{1}$)		$\begin{aligned} & \text { Up to } 400 \mathrm{~V} A C^{1)} \\ & 415 \mathrm{~V} A C^{2)} \end{aligned}$		$\begin{aligned} & \text { Up to } 440 \vee A C^{1)} \\ & 460 \vee C^{2)} \end{aligned}$		$\begin{aligned} & \text { Up to } 500 \mathrm{VAC}{ }^{1)} \\ & 525 \mathrm{VAC}^{2)} \end{aligned}$		Up to $690 \mathrm{VAC}{ }^{1 / 5)}$	
		$\begin{aligned} & I_{\text {CulT }} \\ & \mathrm{kA} \end{aligned}$	Max. fuse $(\mathrm{gG})^{3}$ A	$I_{\text {Cult }}$ kA	Max. fuse (gG$)^{3 / 4)}$ A	$I_{\text {cult }}$ kA	Max. fuse $(\mathrm{gG})^{3}$ A	$\begin{aligned} & I_{\text {CuIT }} \\ & \mathrm{kA} \end{aligned}$	Max. fuse $\left.(\mathrm{gG})^{3}\right)$ A	kA	$\left.(g G)^{3}\right)$ A
Size S2											
$\begin{aligned} & \text { 3RV2031, 3RV2131, } \\ & \text { 3RV2331 } \end{aligned}$	$\begin{aligned} & 14 \ldots \\ & 32 \ldots \\ & 32 \\ & 52 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	--	$\begin{aligned} & 8 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \\ & 125 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \\ & \hline \end{aligned}$
Size S2, with increased switching capacity											
3RV2032, 3RV2332	$\begin{array}{lll} 14 & \ldots & 25 \\ 32 \ldots & 45 \\ 52 & & \\ 59 & \ldots & 80 \end{array}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -- \\ & \text {-- } \\ & \text {-- } \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \\ & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & 80 \\ & 100 \\ & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 63 \\ & 80 \\ & 100 \\ & 100 \end{aligned}$
Size S3											
3RV2.41	$40 \ldots 100$	On re									

Size S3, with increased
switching capacity
3RV2.42 40 ... 100 On request
-- No back-up fuse required, since short-circuit resistant up to 100 kA

1) 10% overvoltage.
2) 5% overvoltage.
3) Back-up fuse only required if short-circuit current at installation location is $>I_{\text {cult }}$.
${ }^{4)}$ Alternatively, fuseless limiter combinations for $690 \vee$ AC can also be used.
4) Overvoltage category II applies for applications in IT systems $>600 \mathrm{~V}$.

Limiter function with standard devices for 500 V AC and 690 V AC according to IEC 60947-2

The table shows the rated ultimate short-circuit breaking capacity I_{cu} and the rated service short-circuit breaking capacity $I_{\text {cs }}$ with an upstream standard motor starter protector/circuit breaker that fulfills the limiter function at voltages 500 V AC and 690 V AC.

The short-circuit breaking capacity can be increased significantly with an upstream standard motor starter protector/circuit breaker with limiter function. The motor starter protector/circuit
breaker which is connected downstream must be set to the rated current of the load

With motor starter protector/circuit breaker assemblies, note the clearance to grounded parts and between the motor starter protectors/circuit breaker. Short-circuit proof wiring between the motor starter protectors/circuit breaker must be ensured. The motor starter protectors/circuit breakers can be mounted side by side in a modular arrangement.

[^0]
Motor Starter Protectors/Circuit Breakers

SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Permissible rated data of devices approved for North America (UL/CSA)

Motor starter protectors of the 3RV2 series are approved for UL/CSA, and according to UL 508/UL 60947-4-1 and CSA C22.2 No. 14/CSA C22.2 No. 60947-4-1 they can be used on their own or as load feeders in combination with a contactor.

3RV2 motor starter protectors as "Manual Motor Controllers"

If used as a "Manual Motor Controller", the motor starter protector is always operated in combination with an upstream short-circuit protection device. Approved fuses or a circuit breaker according to UL 489/CSA C22.2 No. 5 may be used for this purpose. These devices must be dimensioned according to the National Electrical Code (UL) or Canadian Electrical Code (CSA).

These motor starter protectors/circuit breakers can be used as "Manual Motor Controllers" for "Group Installations", as "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations" and as "Self-Protected Combination Motor Controllers" (Type E)

Size S3 available on request

-- No approval

1) hp rating = Power rating in horse power (maximum motor rating).
2) FLA $=$ Full Load Amps/motor full load current.
3) Corresponds to "short-circuit breaking capacity" according to UL/CSA
${ }^{4)}$ Values in brackets only apply to 3RV2.23 motor starter protectors.
4) With Class J fuse

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data
3RV20 motor starter protectors (up to 100 A) as "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations"

The application as "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations" is only available for UL. CSA does not recognize this approval! When the motor starter protector is used as a "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations", it must always be combined with upstream short-circuit protection. Approved fuses or a circuit breaker according to UL 489 may be used for this purpose. These devices must be dimensioned according to the National Electrical Code.

The 3RV20 motor starter protectors are approved as "Manua Motor Controllers Suitable for Tap Conductor Protection in Group Installations" under the following file number:

- UL File No. 47705, CCN: NLRV

Motor starter protectors/ circuit breakers		hp rating ${ }^{1)}$ for FLA ${ }^{\text {2 }}$ max.		Rated current I_{n}	$\begin{aligned} & 240 \text { V AC } \\ & \text { UL } \end{aligned}$	$480 \text { Y/277 V AC }$ UL	$\begin{aligned} & 600 \mathrm{Y} / 347 \mathrm{~V} \mathrm{AC} \\ & \text { UL } \end{aligned}$
Type	V	Singlephase	3-phase	A	kA	kA	kA
Size S00							
3RV2011				$\begin{aligned} & 0.16 \ldots 12.5 \\ & 16 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	30
FLA ${ }^{2)}$ max. 16 A, 480 V $12.5 \mathrm{~A}, 600 \mathrm{~V}$	$\begin{aligned} & 115 \\ & 200 \\ & 230 \\ & 460 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 10 \\ & 10 \end{aligned}$				
Size S0							
3RV2021				$\begin{aligned} & 0.16 \ldots 12.5 \\ & 16 \ldots 25 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	30
FLA ${ }^{2}$ max. $32 \mathrm{~A}, 480 \mathrm{~V}$ $12.5 \mathrm{~A}, 600 \mathrm{~V}$	$\begin{aligned} & 115 \\ & 200 \\ & 230 \\ & 460 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & 5 \\ & 7.5 \\ & 10 \\ & 20 \end{aligned}$	28; 32	50	50	--
Size S2							

Motor Starter Protectors/Circuit Breakers

SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

3RV20 motor starter protectors (up to 100 A) as "Self-Protected Combination Motor Controller (Type E)"

UL 508/UL 60947-4-1 approval demands 1-inch through air spacing and 2 -inch over surface spacing at line side for "Self-Protected Combination Motor Controller Type E".

Therefore, 3RV20 motor starter protectors of sizes S00 to S3 are approved according to UL 508/UL 60947-4-1 in combination with the terminal blocks listed below.

CSA does not require these extended clearances. According to CSA, these terminal blocks can be omitted when the device is used as a "Self-Protected Combination Motor Controller".

The 3RV20 motor starter protectors are approved as "Self-Protected Combination Motor Controllers" under the following file numbers:

- UL File No. E156943, CCN: NKJH
- CSA Master Contract 165071, Product Class: 321108

Motor starter protectors/ circuit breakers		hp rating ${ }^{1)}$ for FLA ${ }^{2)}$ max.		Rated current I_{n} A	Up to $\mathbf{2 4 0}$ V AC		Up to $480 \mathrm{Y} / 277$ V AC		Up to 600 Y/347 V AC	
		max. Singlephase	3-phase		$\begin{aligned} & \mathrm{UL} \\ & \mathrm{I}_{\mathrm{bc}}{ }^{3}{ }^{3} \\ & \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CSA } \\ & I_{\mathrm{bc}}{ }^{3)} \\ & \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{UL} \\ & \left.I_{\mathrm{bc}}{ }^{3}\right) \\ & \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CSA } \\ & I_{\mathrm{bc}}{ }^{3)} \\ & \mathrm{kA} \end{aligned}$	$\begin{aligned} & \mathrm{UL} \\ & \left.I_{\mathrm{bc}}{ }^{3}\right) \\ & \mathrm{kA} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CSA} \\ & I_{\mathrm{bc}}{ }^{3)} \\ & \mathrm{kA} \end{aligned}$
Size S00										
3RV2011 + 3RV2928-14 ${ }^{4 / 5)}$				$\begin{aligned} & 0.16 \ldots 12.5 \\ & 16 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	30	30			
FLA ${ }^{2)}$ max. $16 \mathrm{~A}, 480 \mathrm{~V}$; 12.5 A, 600 V	$\begin{aligned} & 115 \\ & 200 \\ & 230 \\ & 460 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & -- \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 10 \\ & 10 \end{aligned}$							
Size S0										
$\begin{aligned} & \text { 3RV2021 + 3R } \\ & \\ & \mathrm{FLA}^{2)} \text { max. } \\ & 32 \mathrm{~A}, 480 \mathrm{~V} \\ & 12.5 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathbf{1 \mathbf { H } ^ { 4) 5 }} \\ & \\ & 115 \\ & 200 \\ & 230 \\ & 460 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \\ & 5 \\ & -- \\ & \hline- \end{aligned}$	$\begin{aligned} & 5 \\ & 7.5 \\ & 10 \\ & 20 \\ & -- \end{aligned}$	$\begin{aligned} & 0.16 \ldots 12.5 \\ & 16 \ldots 25 \\ & 28 ; 32 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 30 \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & 30 \\ & -- \end{aligned}$
Size S2										
3RV2031+ 3RV2938-1K4				$\begin{aligned} & 14 \ldots 36 \\ & 40 \ldots 52 \\ & 59 \ldots 73 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 20 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & --2 \end{aligned}$
FLA ${ }^{2)}$ max. 73 A, 480 V $52 \mathrm{~A}, 600 \mathrm{~V}$	$\begin{aligned} & 115 / 120 \\ & 200 / 208 \\ & 230 / 240 \\ & 460 / 480 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 15 \\ & 15 \\ & -- \\ & -- \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \\ & 30 \\ & 60 \\ & 75 \end{aligned}$							
Size S2, with increased switching capacity										
3RV2032 + 3RV2938-1K ${ }^{\text {4 }}$				$\begin{aligned} & 14 \ldots 36 \\ & 40 \ldots 52 \\ & 59 \ldots 73 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 30 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 30 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \\ & -- \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \end{aligned}$
FLA ${ }^{2)}$ max. 73 A, 480 V $52 \mathrm{~A}, 600 \mathrm{~V}$	$\begin{aligned} & 115 / 120 \\ & 200 / 208 \\ & 230 / 240 \\ & 460 / 480 \\ & 575 / 600 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 15 \\ & 15 \\ & -- \end{aligned}$	$\begin{aligned} & 10 \\ & 25 \\ & 30 \\ & 60 \\ & 75 \end{aligned}$							--

Size S3 available on request

-- No approval
${ }^{1)}$ hp rating = Power rating in horse power (maximum motor rating).
2) $\mathrm{FLA}=$ Full Load Amps/motor full load current.

3RV27 and 3RV28 motor starter protectors as "circuit breakers"
These motor starter protectors are approved as circuit breakers according to UL 489 and CSA C22.2 No. 5. They can be used therefore as upstream short-circuit protective devices for
"Manual Motor Controllers" and "Manual Motor Controllers Suitable for Tap Conductor Protection in Group Installations".
3) Corresponds to "short-circuit breaking capacity" according to UL/CSA
${ }^{4)}$ Not required for CSA.
5) Alternatively phase barrier 3RV2928-1K can be used.

3RV27 and 3RV28 motor starter protectors are approved as "circuit breakers" under the following file numbers:

- UL File No. E235044, CCN: DIVQ
- CSA Master Contract 165071, Product Class: 143201

Motor starter protectors/ circuit breakers	Rated current $I_{\text {n }}$	240 V AC		$480 \mathrm{Y} / 277$ V AC		480 V AC		$600 \mathrm{Y} / 347 \mathrm{~V}$ AC	
		UL	CSA	UL	CSA	UL	CSA	UL	CSA
		$I_{\text {bc1) }}$	$I_{\text {bc1) }}$	$I_{\text {bc } 1)}$	$I_{\text {bc } 1)}$	$I_{\text {bc1 }}$	$I_{\text {bc 1) }}$	$I_{\text {bc } 1)}$	$I_{\text {bc 1) }}$
Type	A	kA							
Size S00									
3RV2711	$\begin{aligned} & 0.16 \ldots 12.5 \\ & 15 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & \hline \end{aligned}$	--	--	10	10
3RV2811	$\begin{aligned} & 0.16 \ldots 12.5 \\ & 15 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & \hline \end{aligned}$	--	$\begin{aligned} & \text {-- } \\ & \hline \end{aligned}$	10	10
Size So									
3RV2721	20; 22	50	50	50	50	--	--	--	--
3RV2821	20; 22	50	50	50	50	--	--	--	--

Size S3 available on request
-- No approval

[^1]Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

General data							
Type Size Dimensions (W x H x D) - Screw terminals - Spring-type terminals		mm mm	3RV2.1. SOO $\begin{aligned} & 45 \times 97 \times 91 \\ & 45 \times 106 \times 91 \end{aligned}$	3RV2.2. SO $\begin{aligned} & 45 \times 97 \times 91 \\ & 45 \times 119 \times 91 \\ & \hline \end{aligned}$	3RV2.3. S2 $55 \times 140 \times 149$	3RV2.4. S3 $70 \times 165 \times 169$	3RV27, 3RV28 s00, SO $45 \times 144 \times 92$
Standards - IEC 60947-1, EN 60947-1 (VDE 0660 Part 100) - IEC 60947-2, EN 60947-2 (VDE 0660 Part 101) - IEC 60947-4-1, EN 60947-4-1 (VDE 0660 Part 102) - UL 508/UL 60947-4-1, CSA C22.2 No. 14/CSA C22.2 No. 60947-4-1 - UL 489, CSA C22. 2 No. 5			Yes Yes Yes Yes	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes	Yes
Number of poles			3				
Max. rated current $I_{n \text { max }}$ (= max. rated operational current I_{e})		A	16	40	80	100	22
Permissible ambient temperatu - Storage/transport - Operation	$\begin{aligned} & I_{n}: 0.16 \ldots 32 \mathrm{~A} \\ & I_{n}: 36 \ldots 40 \mathrm{~A} \end{aligned}$ $I_{n}: 14 \ldots 80 \mathrm{~A}$ $I_{\mathrm{n}}: 40 \ldots 100 \mathrm{~A}$		$\begin{aligned} & -50 \ldots+80 \\ & -20 \ldots+70 \end{aligned}$ (current reduc	$\begin{aligned} & \text { above } \left.+60^{\circ} \mathrm{C}\right) \\ & -20 \ldots+40 \end{aligned}$ (The devices must not be mounted side-by-side and they must not be assembled with link modules with contactors. Lateral clearance $=9 \mathrm{~mm}$)	$-20 \ldots+70$ (current reduction above $\left.+60^{\circ} \mathrm{C}\right)$	$-20 \ldots+70$ (current reduction above $\left.+60^{\circ} \mathrm{C}\right)$	--
Permissible rated current at inside temperature of control cabinet$\begin{aligned} & \cdot+60^{\circ} \mathrm{C} \\ & \cdot \\ & \cdot+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 100 \\ & 87 \end{aligned}$				
Permissible rated current at ambient temperature of enclosure (applies to motor starter protector/circuit breaker inside enclosure): $\mathbf{S 0 0 / S 0 \leq 3 2 ~ A , ~ S 2 \leq 5 2 ~ A) ~}$ $\cdot+35^{\circ} \mathrm{C}$ - $+60^{\circ} \mathrm{C}$		$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 100 \\ & 87 \end{aligned}$		100	$\begin{aligned} & 100 \\ & 87 \end{aligned}$	
Rated operational voltage U_{e} - Acc. to IEC - Acc. to UL/CSA		$\begin{aligned} & \text { VAC } \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 690 \text { (when a m } \\ & 600 \end{aligned}$	ded-plastic enclosure	is used only 500		
Rated frequency		Hz	50/60				
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$		V	690			1000	690
Rated impulse withstand voltage $U_{\text {imp }}$		kV	6			8	6
Utilization category - IEC 60947-2 (motor starter protector/circuit breaker) - IEC 60947-4-1 (motor starter)			$\begin{aligned} & \text { A } \\ & \text { AC-3 } \end{aligned}$				
Trip class CLASS	Acc. to IEC 60947-4-1		10		10/20		--
DC short-circuit breaking capacity (time constant $t=5 \mathrm{~ms}$) - 1 conducting path 150 V DC - 2 conducting paths in series 300 V DC - 3 conducting paths in series 450 V DC		$\begin{aligned} & \text { KA } \\ & \text { KA } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$		On request		$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$
Power loss P_{v} for each motor starter protector/circuit breake Dependent on rated current I_{n} (upper setting range)	$\begin{aligned} & I_{\mathrm{I}}: 0.16 \ldots 0.63 \mathrm{~A} \\ & I_{\mathrm{n}}: 0.8 \ldots 6.3 \mathrm{~A} \\ & I_{\mathrm{n}}: 8 \ldots 16 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline W \\ & W \\ & W \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$		--		$\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$
	$I_{\mathrm{n}}: 14 \ldots 16 \mathrm{~A}$	W	--	7	10	--	7
$R_{\text {per conducting path }}=\frac{P}{I^{2} \times 3}$	$I_{\mathrm{n}}: 17 \ldots 25 \mathrm{~A}$ $I_{\mathrm{n}}: 28 \ldots 32 \mathrm{~A}$ $I_{\mathrm{n}}: 36 \ldots 40 \mathrm{~A}$	W W W	--	$\begin{aligned} & 8 \\ & 11 \\ & 14 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 15 \end{aligned}$	-- --	8
	$\begin{aligned} & \hline I_{n}: 45 \ldots 52 \mathrm{~A} \\ & I_{1}: 59 \ldots 65 \mathrm{~A} \\ & I_{n}: 73 \ldots 80 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & w \\ & w \\ & w \end{aligned}$	--	--	$\begin{aligned} & 17 \\ & 19 \\ & 21 \\ & \hline \end{aligned}$	--	--
	$\begin{aligned} & \hline I_{n}: 40 \ldots 50 \mathrm{~A} \\ & I_{n}: 63 \ldots 75 \mathrm{~A} \\ & I_{n}: 84 \ldots 93 \mathrm{~A} \\ & I_{\mathrm{n}}: 100 \mathrm{~A} \\ & \hline \end{aligned}$	W W W W		-- -- --		$\begin{aligned} & 21 \\ & 21 \\ & 32 \\ & 38 \\ & \hline \end{aligned}$	--
Shock resistance Acc. to IEC 60068-2-2		g / ms	25/11 (squar	sine pulse)			

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

General data (continued)							
Type Size Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) - Screw terminals - Spring-type terminals		mm mm	3RV2.1. SOO $\begin{aligned} & 45 \times 97 \times 91 \\ & 45 \times 106 \times 91 \\ & \hline \end{aligned}$	3RV2.2. SO $\begin{aligned} & 45 \times 97 \times 91 \\ & 45 \times 119 \times 91 \end{aligned}$	3RV2.3. S2 $55 \times 140 \times 149$	3RV2.4. S3 $70 \times 165 \times 169$	3RV27, 3RV28 SOO, SO $45 \times 144 \times 92$
Degree of protection	Acc. to IEC 60529		IP20		- IP20 (front side) - Terminal IPOO (use additional terminal covers for higher degree of protection)		
Touch protection	Acc. to IEC 60529		Finger-safe		Finger-safe, for vertical contact from the front		
Temperature compensation	Acc. to IEC 60947-4-1	${ }^{\circ} \mathrm{C}$	-20 ... +60				
Phase failure sensitivity	Acc. to IEC 60947-4-1		Yes (not for 3RV23 motor starter protectors)				No
Protection of motors in hazardo - EC type-examination certificate European Directive 2014/34/EU - according to international stand	us environments number according to (ATEX) ard IECEX		Yes (only for 3RV20 motor starter protectors) DMT 02 ATEX F 001 を ε_{x} II (2) GD IECEx BVS1.0102 [Ex]			On request On request On request	No No No
Isolating function Main and EMERGENCY-STOP switch characteristics (with corresponding accessories)	Acc. to IEC 60947-2 Acc. to EN 60204-1 VDE 0113		$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$				
Protective separation between Acc. to IEC 60947-1 main and auxiliary circuits required for PELV-applications - Up to $400 V+10 \%$ - Up to $415 \mathrm{~V}+5$ \% (higher voltages on request)			$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$				
Permissible mounting position			Any, acc. to IEC 60447 start command "I" right-hand side or top				
Mechanical endurance (operating cycles)			100000		$\begin{aligned} & 52 \mathrm{~A}: 50000, \\ & 80 \text { A: } 20000 \end{aligned}$	On request	100000
Electrical endurance (operating cycles)			100000		$\begin{aligned} & 52 \mathrm{~A}: 50000, \\ & 80 \mathrm{~A}: 20000 \end{aligned}$	25000	100000
Max. switching frequency per hour (motor starts) $1 / \mathrm{h}$			15				

General data	
Type Size Dimensions (W $\times \mathrm{H} \times \mathrm{D}$) mm	3RV2742 3RV1611-OBD10 ${ }^{1)}$ S3 SOO $70 \times 168 \times 169$ $45 \times 90 \times 70$
Standards - IEC 60947-1, EN 60947-1 (VDE 0660 Part 100) - IEC 60947-2, EN 60947-2 (VDE 0660 Part 101) - UL 508/UL 60947-4-1, CSA C22.2 No.14/CSA 60947-4-1 - UL 489, CSA C22.2 No. 5	Yes Yes No Yes Yes No
Number of poles	3
Max. rated current $I_{\mathrm{n} \text { max }}$ (= max. rated operational current I_{e})	70 0.2
Permissible ambient temperature - Storage/transport - Operation	$\begin{aligned} & -50 \ldots+80 \\ & -20 \ldots+70\left(\text { current reduction above }+60^{\circ} \mathrm{C}\right) \end{aligned}$
Permissible rated current at inside temperature of control cabinet - $+60^{\circ} \mathrm{C}$ - $+70^{\circ} \mathrm{C}$	$\begin{aligned} & 100 \\ & 87 \end{aligned}$

Permissible rated current at
enclosure ambient temperature
(applies for motor starter protector inside enclosure)

- $+35^{\circ} \mathrm{C}$
- $+60^{\circ} \mathrm{C}$
\% $\quad 100$

Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$

- Acc. to IEC
\% 87
Acc. to IEC VAC 690

Rated frequency	Hz	$50 / 60$

Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}} \quad \mathrm{V} \quad 1000$
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }} \quad$ kV 8

Utilization category

- IEC 60947-2 (motor starter protector/circuit breaker) A

DC short-circuit breaking capacity
(time constant $t=5 \mathrm{~ms}$)

- 1 conducting path 150 V DC KA On request
- 2 conducting paths in series 300 V DC
- 3 conducting paths in series 450 V DC
kA

1) "Technical Specifications" for 3RV1611 voltage transformer circuit breakers, see page 7/23.

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Front transverse auxiliary switches			
		Switching capacity for different voltages	
		1 CO	$1 \mathrm{NO}+1 \mathrm{NC}$,
Rated operational current $I_{\text {e }}$			
- At AC-15, alternating voltage - 24 V - 230 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 0.5 \end{aligned}$
- At AC-12 $=I_{\text {th }}$, alternating voltage $-24 \mathrm{~V}$ $\begin{array}{r} -230 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$
$\begin{aligned} & \text {-At DC-13, direct voltage L/R } 200 \mathrm{~ms} \\ & -24 \mathrm{~V} \\ & -48 \mathrm{~V} \\ & -60 \mathrm{~V} \\ & -110 \mathrm{~V} \\ & -220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1 \\ & -- \\ & -- \\ & 0.22 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 0.3 \\ & 0.15 \\ & -- \\ & -- \end{aligned}$
Minimum load capacity	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 17 \\ & 1 \end{aligned}$	

Front transverse solid-state compatible auxiliary switches

			Switching capacity for different voltages
		$\mathbf{1 ~ C o}$	
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$	Alternating voltage	V	125
Rated operational current $\boldsymbol{I}_{\mathbf{e}} /$ AC-14	At $U_{\mathrm{e}}=125 \mathrm{~V}$	A	0.1
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$	Direct voltage L/R 200 ms	V	60
Rated operational current $\boldsymbol{I}_{\mathbf{e}} /$ DC-13	At $U_{\mathrm{e}}=60 \mathrm{~V}$	A	0.3
Minimum load capacity		V	5
		mA	1

Lateral auxiliary switches with signaling switch

		Switching capacity for different voltages: Lateral auxiliary switch with 1 NO + 1 NC, 2 NO, 2 NC, 2 NO +2 NC; Signaling switch
Rated operational current $I_{\text {e }}$		
- At AC-15, alternating voltage		
- 24 V -	A	6
- 230 V	A	4
- 400 V	A	3
- 690 V	A	1
$-24 \mathrm{~V}$	A	10
- 230 V	A	10
- 400 V	A	10
- 690 V	A	10
- At DC-13, direct voltage L/R 200 ms		
- 24 V	A	2
- 110 V	A	0.5
- 220 V	A	0.25
- 440 V	A	0.1
Minimum load capacity	V	17
	mA	1

Auxiliary releases			
		Undervoltage releases	Shunt releases
Power consumption			
- During pick-up - AC voltages - DC voltages	VA/W W	$\begin{aligned} & 20.2 / 13 \\ & 20 \end{aligned}$	$\begin{aligned} & 20.2 / 13 \\ & 13 \ldots 80 \end{aligned}$
- During uninterrupted duty - AC voltages - DC voltages	VA/W W	$\begin{aligned} & 7.2 / 2.4 \\ & 2.1 \end{aligned}$	
Response voltage			
- Tripping	V	$0.35 \ldots 0.7 \times U_{\text {s }}$	$0.7 \ldots 1.1 \times U_{\text {s }}$
- Pick-up	V	$0.85 \ldots 1.1 \times U_{\text {S }}$	--
Opening time maximum	ms	20	
Short-circuit protection for auxiliary and control circuits			
Melting fuses operational class gG	A	10	
Miniature circuit breakers C characteristic	A	6 (prospective short-circu	. 4 kA)

Conductor cross-sections of main circuit						
Type		3RV2.11	3RV2.21	3RV2.31-4B.1., 3RV2.31-4D.1., 3RV2.31-4E.1., 3RV2.31-4P.1., 3RV2.31-4S.1., 3RV2.31-4T.1., 3RV2.31-4U.1., 3RV2.31-4V.1.	3RV2.31-4J.1., 3RV2.31-4K.1., 3RV2.31-4R.1., 3RV2.31-4W.1., 3RV2.31-4X.1., 3RV2431-4VA1., 3RV2.32	3RV27, 3RV28
Size		S00	So	S2		S00, So
Connection type		(f) Screw terminals				
Terminal screw		M3, Pozidriv size 2	M4, Pozidriv size 2	M6, Pozidriv size 2		M4, Pozidriv size 2
Operating devices	mm	$\varnothing 5 \ldots 6$	$\varnothing 5 \ldots 6$	$\varnothing 5 \ldots 6$		$\varnothing 5 \ldots 6$
Prescribed tightening torque	Nm	0.8 ... 1.2	$2 . . .2 .5$	3.0 ... 4.5		2.5 ... 3
Conductor cross-sections (min./max.), 1 or 2 conductors can be connected						
- Solid or stranded	mm^{2}	$\begin{aligned} & \left.2 \times(0.75 \ldots 2.5)^{1}\right) \\ & 2 \times 4 \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots .2)^{1} \\ & 2 \times(2.5 \ldots .10)^{11} \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 25)^{1}{ }^{2} \\ & 1 \times(1 \ldots .35)^{1)} \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 35)^{1}{ }^{1} \\ & 1 \times(1 \ldots 50)^{1)^{\prime}} \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 10)^{1)}, \\ & \max . .1 \times 25 \end{aligned}$
- Finely stranded with end sleeve (DIN 46228-1)	mm^{2}	$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{1}\right) \\ & \left.2 \times(0.75 \ldots 2.5)^{1}\right) \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 2.5)^{1)} \\ & 2 \times(2.5 \ldots 6)^{1)^{\prime}}, \\ & 1 \times 10 \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 16)^{1}{ }^{1} \\ & 1 \times(1 \ldots 25)^{1)^{\prime}} \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 25)^{11} \\ & 1 \times(1 \ldots 35)^{1)^{\prime}} \end{aligned}$	$\begin{aligned} & 1 \times(1 \ldots 16), \\ & \max .6+16 \end{aligned}$
- AWG cables, solid or stranded	AWG	$\begin{aligned} & \left.2 \times(20 \ldots 16)^{1}\right) \\ & \left.2 \times(18 \ldots 12)^{1}\right)^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times(18 \ldots 12)^{1)}, \\ & 2 \times(14 \ldots 8)^{1} \\ & 2 \times\left(\begin{array}{l} \text { a } \end{array}\right. \end{aligned}$	$\begin{aligned} & 2 \times(18 \ldots 3)^{11} \\ & 1 \times(18 \ldots .2)^{1)^{\prime}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times(18 \ldots 2)^{11} \\ & \left.1 \times(18 \ldots .1)^{1}\right)^{\prime} \end{aligned}$	$2 \times(14 \ldots 10)$
Connection type		○ Spring-type	terminals			
Operating devices	mm	3.0×0.5				
Conductor cross-sections (min./max.), 1 or 2 conductors can be connected						
- Solid or stranded	mm^{2}	$2 \times(0.5 \ldots 4)$	$2 \times(1 \ldots 10)$	--		
- Finely stranded without end sleeve	mm^{2}	$2 \times(0.5 \ldots 2.5)$		--		
- Finely stranded with end sleeve (DIN 46228-1)	mm^{2}	$2 \times(0.5 \ldots 2.5)$	$2 \times(1 \ldots 6)$	--		
- AWG cables, solid or stranded	AWG	$2 \times(20 \ldots 12)$	$2 \times(18 \ldots 8)$	--		
Max. external diameter of the conductor insulation	mm	3.6	6.4	--		

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

1) "Technical Specifications" for 3RV16 voltage transformer circuit breakers see page 7/23.
2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.
3) Cable lug and busbar connection possible after removing the box terminals.

Conductor cross-sections for auxiliary and control circuits

Type Size		3RV2.11 500	$\begin{aligned} & \text { 3RV1611- } \\ & \text { OBD10 } \end{aligned}$	3RV2.21 SO	3RV2.3 S2	3RV2.4 S3	3RV27, 3RV28 S00, S0, S3
Connection type		(1) Screw terminals					
Terminal screw		M3, Pozidriv size 2					
Operating devices	mm	$\varnothing 5 \ldots 6$					
Prescribed tightening torque	Nm	0.8 ... 1.2					
Conductor cross-sections (min./max.), 1 or 2 conductors can be connected							
- Solid or stranded	mm^{2}	$\left.2 \times(0.5 \ldots 1.5)^{2}\right), 2 \times(0.75 \ldots 2.5)^{2)}$					
- Finely stranded with end sleeve (DIN 46228-1)	mm^{2}	$2 \times(0.5 \ldots 1.5)^{2}, 2 \times(0.75 \ldots 2.5)^{2)}$					
- AWG cables, solid or stranded	AWG	$\left.2 \times(18 \ldots 14)^{2)}, 2 \times(20 \ldots 16)^{2}\right)$					
Connection type		\bigcirc Spring-type terminals					
Operating devices	mm	3.0×0.5					
Conductor cross-sections (min./max.), 1 or 2 conductors can be connected							
- Solid or stranded	mm^{2}	$2 \times(0.5 \ldots 2.5)$					
- Finely stranded without end sleeve	mm^{2}	$2 \times(0.5 \ldots 2.5)$					
- Finely stranded with end sleeve (DIN 46228-1)	mm^{2}	$2 \times(0.5 \ldots 1.5)$					
- AWG cables, solid or stranded	AWG	$2 \times(20 \ldots 14)$					
Max. external diameter of the conductor insulation	mm	3.6					
1) "Technical Specifications" for 3RV16 voltage transformer circuit breakers, see page 7/23.	2) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.						

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Voltage transformer circuit breakers

[^2] point, both cross-sections must be in the range specified.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

General data

Terminals for "Self-Protected Combination Motor Controllers (Type E)
according to UL 508/UL 60947-4-1"

Type	3RV2928-1H	
Prescribed tightening torque	Nm	2.5 ... 3
Conductor cross-sections		
- Front clamping point connected - Finely stranded with end sleeve - Stranded - AWG cables, solid or stranded - Terminal screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots 16 \\ & 2.5 \ldots 25 \\ & 14 \ldots 3 \\ & \text { M4 } \end{aligned}$
	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots 16 \\ & 1.5 \ldots 25 \\ & 14 \ldots 6 \\ & \text { M4 } \end{aligned}$
- Both clamping points connected - Front clamping point: Solid Finely stranded with end sleeve Stranded AWG cables, solid or stranded Terminal screw - Rear clamping point: Solid Finely stranded with end sleeve Stranded AWG cables, solid or stranded Terminal screw	mm^{2} mm^{2} mm^{2} AWG mm^{2} $\mathrm{~mm}^{2}$ $\mathrm{~mm}^{2}$ AWG	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots 10^{1)}, 1 \ldots 6^{1)} \\ & 2.5 \ldots 10^{\prime} \\ & 14 \ldots 6 \\ & \text { M4 } 4 \\ & 1 \ldots 10 \\ & 1 \ldots 10^{1)}, 1 \ldots 16^{1)} \\ & 2.5 \ldots 10^{1} \\ & 16 \ldots 3 \\ & \text { M4 } 4 \end{aligned}$

1) The following connections are possible when both clamping points are connected:

- front 1 ... $10 \mathrm{~mm}^{2}$ and rear 1 ... $10 \mathrm{~mm}^{2}$.
- front $1 \ldots 6 \mathrm{~mm}^{2}$ and rear $1 \ldots 16 \mathrm{~mm}^{2}$

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

Motor feeder connectors for motor starter protectors/ circuit breakers with screw terminals		
Version		

${ }^{1)}$ For more information about short-circuit values, e.g. for protection against high short-circuit currents, see the UL reports of the individual devices, www.siemens.com/sirius/manuals.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
For motor protection IE3/IE4 ready
Selection and ordering data

PU (UNIT, SET, M) $=1$ $\begin{aligned} \text { PS* } & =1 \text { unit } \\ \text { PG } & =41 \mathrm{E}\end{aligned}$

Rated current	Suitable for three-phase motors ${ }^{1)}$ with P	Setting range for thermal overload release	Instantaneous overcurrent release	Short-circuit breaking capacity at 400 VAC	SD	Screw terminals	(1)	SD	Spring-type terminals	-0
$I_{\text {n }}$		¢	$\underline{ }$ >	$I_{\text {cu }}$		Article No.	Price per PU		Article No.	Price per PU
A	kW	A	A	kA	d			d		
Size S00										
0.16	0.04	$0.11 \ldots 0.16$	2.1	100	-	3RV2011-0AA10		\checkmark	3RV2011-0AA20	
0.2	0.06	$0.14 \ldots 0.2$	2.6	100	-	3RV2011-0BA10		-	3RV2011-0BA20	
0.25	0.06	$0.18 \ldots 0.25$	3.3	100	-	3RV2011-0CA10		-	3RV2011-0CA20	
0.32	0.09	$0.22 \ldots 0.32$	4.2	100	-	3RV2011-0DA10		\checkmark	3RV2011-0DA20	
0.4	0.09	$0.28 \ldots 0.4$	5.2	100	-	3RV2011-0EA10		-	3RV2011-0EA20	
0.5	0.12	$0.35 \ldots 0.5$	6.5	100	-	3RV2011-0FA10		$\stackrel{\rightharpoonup}{ }$	3RV2011-0FA20	
0.63	0.18	$0.45 \ldots 0.63$	8.2	100	-	3RV2011-0GA10		-	3RV2011-0GA20	
0.8	0.18	$0.55 \ldots 0.8$	10	100	\checkmark	3RV2011-0HA10		\checkmark	3RV2011-0HA20	
1	0.25	$0.7 \ldots 1$	13	100	-	3RV2011-0JA10		-	3RV2011-0JA20	
1.25	0.37	0.9 ... 1.25	16	100	-	3RV2011-OKA10		-	3RV2011-0KA20	
1.6	0.55	1.1 ... 1.6	21	100	-	3RV2011-1AA10		-	3RV2011-1AA20	
2	0.75	$1.4 \ldots 2$	26	100	-	3RV2011-1BA10		-	3RV2011-1BA20	
2.5	0.75	1.8 ... 2.5	33	100	-	3RV2011-1CA10		-	3RV2011-1CA20	
3.2	1.1	2.2 ... 3.2	42	100	-	3RV2011-1DA10		-	3RV2011-1DA20	
4	1.5	2.8 ... 4	52	100	-	3RV2011-1EA10		-	3RV2011-1EA20	
5	1.5	3.5 ... 5	65	100	\checkmark	3RV2011-1FA10			3RV2011-1FA20	
6.3	2.2	4.5 ... 6.3	82	100	-	3RV2011-1GA10		-	3RV2011-1GA20	
8	3	5.5 ... 8	104	100	\checkmark	3RV2011-1HA10		-	3RV2011-1 HA20	
10	4	7... 10	130	100	-	3RV2011-1JA10		-	3RV2011-1JA20	
12.5	5.5	9... 12.5	163	100	-	3RV2011-1KA10		-	3RV2011-1KA20	
16	7.5	$10^{2)} \ldots 16$	208	55	-	3RV2011-4AA10		-	3RV2011-4AA20	
Size S0										
0.63	0.18	0.45 ... 0.63	8.2	100	5	3RV2021-0GA10		5	3RV2021-0GA20	
0.8	0.18	$0.55 \ldots 0.8$	10	100	5	3RV2021-0HA10		5	3RV2021-0HA20	
1	0.25	$0.7 \ldots 1$	13	100	5	3RV2021-0JA10		5	3RV2021-0JA20	
1.25	0.37	0.9 ... 1.25	16	100	5	3RV2021-OKA10		5	3RV2021-0KA20	
1.6	0.55	1.1 ... 1.6	21	100	5	3RV2021-1AA10		5	3RV2021-1AA20	
2	0.75	$1.4 \ldots 2$	26	100	5	3RV2021-1BA10		5	3RV2021-1BA20	
2.5	0.75	1.8 ... 2.5	33	100	5	3RV2021-1CA10		5	3RV2021-1CA20	
3.2	1.1	2.2 ... 3.2	42	100	5	3RV2021-1DA10		5	3RV2021-1DA20	
4	1.5	2.8 ... 4	52	100	5	3RV2021-1EA10		5	3RV2021-1EA20	
5	1.5	3.5 ... 5	65	100	5	3RV2021-1FA10		5	3RV2021-1FA20	
6.3	2.2	4.5 ... 6.3	82	100	5	3RV2021-1GA10		5	3RV2021-1GA20	
8	3	5.5... 8	104	100	5	3RV2021-1HA10		5	3RV2021-1 HA20	
10	4	7 ... 10	130	100	5	3RV2021-1JA10		5	3RV2021-1JA20	
12.5	5.5	9... 12.5	163	100	5	3RV2021-1KA10		5	3RV2021-1KA20	
16	7.5	${ }_{10}{ }^{2)} \ldots 16$	208	55	-	3RV2021-4AA10		-	3RV2021-4AA20	
20	7.5	132) $\ldots .20$	260	55	-	3RV2021-4BA10		-	3RV2021-4BA20	
22	11	16 ${ }^{2)} \ldots 22$	286	55	-	3RV2021-4CA10		-	3RV2021-4CA20	
25	11	182) ... 25	325	55	-	3RV2021-4DA10		-	3RV2021-4DA20	
	15	$23 . .28$	364	55	-	3RV2021-4NA10		-	3RV2021-4NA20	
$32^{3)}$	15	27... 32	400	55	-	3RV2021-4EA10		-	3RV2021-4EA20	
$36^{4)}$	18.5	$30 . .36$	432	20	-	3RV2021-4PA10			--	
40)	18.5	34... 40	480	20	\checkmark	3RV2021-4FA10			--	

1) Guide value for 4-pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) The setting range of the thermal overload releases has been extended.
3) Suitable for use with IE3/IE4 motors up to a starting current of 256 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S2.
4) The devices must not be mounted side-by-side and they must not be assembled with link modules with contactors. A lateral clearance of 9 mm is required. For use with IE3/IE4 motors we recommend using 3RV2 motor starter protectors size S2.
Auxiliary switches and other accessories can be ordered separately (see "Accessories" page 7/38 onwards).

CLASS 10, without auxiliary switches

Rated current	Suitable for three-phase motors ${ }^{1)}$ with P	Setting range for thermal overload release	Instantaneous overcurrent release	Short-circuit breaking capacity at 400 VAC	SD	Screw terminals	$丹$	PU (UNIT, SET, M)	PS*	PG
$I_{\text {n }}$		\square	$I>$	I_{cu}		Article No.	Price per PU			
A	kW	A	A	kA	d					
Size S2										
14	5.5	9.5 .. 14	208	65	-	3RV2031-4SA10		1	1 unit	41E
17	7.5	$12 \ldots 17$	260	65	\checkmark	3RV2031-4TA10		1	1 unit	41E
20	7.5	$14 \ldots 20$	260	65	-	3RV2031-4BA10		1	1 unit	41E
25	11	18... 25	325	65	-	3RV2031-4DA10		1	1 unit	41E
32	15	$22 \ldots 32$	416	65	-	3RV2031-4EA10		1	1 unit	41E
36	18.5	$28 \ldots 36$	520	65	\bigcirc	3RV2031-4PA10		1	1 unit	41E
40	18.5	$32 \ldots 40$	585	65	-	3RV2031-4UA10		1	1 unit	41E
45	22	$35 \ldots 45$	650	65	-	3RV2031-4VA10		1	1 unit	41E
52	22	$42 \ldots 52$	741	65	-	3RV2031-4WA10		1	1 unit	41E
59	30	$49 \ldots 59$	845	65	-	3RV2031-4XA10		1	1 unit	41E
65	30	54... 65	845	65	$\stackrel{\square}{ }$	3RV2031-4JA10		1	1 unit	41E
73	37	$62 \ldots 73$	949	65	\checkmark	3RV2031-4KA10		1	1 unit	41E
802)	37	70... 80	1040	65	-	3RV2031-4RA10		1	1 unit	41E
Size S2, with increased switching capacity										
14	5.5	9.5 ... 14	208	100	\checkmark	3RV2032-4SA10		1	1 unit	41E
17	7.5	12... 17	260	100	-	3RV2032-4TA10		1	1 unit	41E
20	7.5	$14 \ldots 20$	260	100	-	3RV2032-4BA10		1	1 unit	41E
25	11	18... 25	325	100	-	3RV2032-4DA10		1	1 unit	41E
32	15	22... 32	416	100	-	3RV2032-4EA10		1	1 unit	41E
36	18.5	$28 \ldots 36$	520	100	-	3RV2032-4PA10		1	1 unit	41E
40	18.5	$32 . . .40$	585	100	$>$	3RV2032-4UA10		1	1 unit	41E
45	22	$35 \ldots 45$	650	100	-	3RV2032-4VA10		1	1 unit	41E
52	22	$42 \ldots 52$	741	100	-	3RV2032-4WA10		1	1 unit	41E
59	30	$49 . .59$	845	100	-	3RV2032-4XA10		1	1 unit	41E
65	30	54... 65	845	100	\bigcirc	3RV2032-4JA10		1	1 unit	41E
73	37	$62 \ldots 73$	949	100	-	3RV2032-4KA10		1	1 unit	41E
802)	37	$70 \ldots 80$	1040	100	-	3RV2032-4RA10		1	1 unit	41E
Size S3 NEW										
40	18.5	$28 . . .40$	520	65	1	3RV2041-4FA10		1	1 unit	41E
50	22	$36 \ldots 50$	650	65	1	3RV2041-4HA10		1	1 unit	41E
63	30	$45 . .63$	819	65	1	3RV2041-4JA10		1	1 unit	41E
75	37	57... 75	975	65	1	3RV2041-4KA10		1	1 unit	41E
84	45	$65 \ldots 84$	1170	65	1	3RV2041-4RA10		1	1 unit	41E
93	45	$75 \ldots 93$	1300	65	1	3RV2041-4YA10		1	1 unit	41E
100	45,55	80... 100	1300	65	1	3RV2041-4MA10		1	1 unit	41E
Size S3, with increased switching capacity NEW										
40	18.5	28... 40	520	100	1	3RV2042-4FA10		1	1 unit	41E
50	22	$36 \ldots 50$	650	100	1	3RV2042-4HA10		1	1 unit	41E
63	30	$45 \ldots 63$	819	100	1	3RV2042-4JA10		1	1 unit	41E
75	37	$57 \ldots 75$	975	100	1	3RV2042-4KA10		1	1 unit	41E
84	45	$65 \ldots 84$	1170	100	1	3RV2042-4RA10		1	1 unit	41E
93	45	$75 \ldots 93$	1300	100	1	3RV2042-4YA10		1	1 unit	41E
100	45,55	$80 \ldots 100$	1300	100	1	3RV2042-4MA10		1	1 unit	41E

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Suitable for use with IE3/IE4 motors up to a starting current of 720 A . For higher starting currents we recommend using motor starter protectors size S3.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
For motor protection IE3/IE4 ready
CLASS 10, with transverse auxiliary switch (1 NO + 1 NC)
PU (UNIT, SET, M) = 1
PS*
PG

$$
\begin{aligned}
& =1 \\
& =1 \text { unit }
\end{aligned}
$$

$$
\text { PG } \quad=41 E
$$

Rated current	Suitable for three-phase motors ${ }^{1)}$ with P	Setting range for thermal overload release	Instantaneous overcurrent release	Short-circuit breaking capacity at 400 VAC	SD	Screw terminals	(1)	SD	Spring-type terminals	$\begin{aligned} & \infty \\ & 0 \\ & \hline 1 \end{aligned}$
I_{n}		द	$\underline{~ I ~}$			Article No.	Price per PU		Article No.	Price per PU
A	kW	A	A	kA	d			d		
Size S00										
0.16	0.04	$0.11 \ldots 0.16$	2.1	100	-	3RV2011-0AA15		-	3RV2011-0AA25	
0.2	0.06	$0.14 \ldots 0.2$	2.6	100	-	3RV2011-0BA15		-	3RV2011-0BA25	
0.25	0.06	0.18 ... 0.25	3.3	100	-	3RV2011-0CA15		-	3RV2011-0CA25	
0.32	0.09	$0.22 \ldots 0.32$	4.2	100	-	3RV2011-0DA15		\checkmark	3RV2011-ODA25	
0.4	0.09	$0.28 \ldots 0.4$	5.2	100	-	3RV2011-0EA15		-	3RV2011-0EA25	
0.5	0.12	$0.35 \ldots 0.5$	6.5	100	-	3RV2011-0FA15		-	3RV2011-0FA25	
0.63	0.18	$0.45 \ldots 0.63$	8.2	100	-	3RV2011-0GA15		-	3RV2011-0GA25	
0.8	0.18	$0.55 \ldots 0.8$	10	100	-	3RV2011-0HA15		\checkmark	3RV2011-0HA25	
1	0.25	0.7 ... 1	13	100	-	3RV2011-0JA15		-	3RV2011-0JA25	
1.25	0.37	0.9 ... 1.25	16	100	-	3RV2011-0KA15		-	3RV2011-0KA25	
1.6	0.55	1.1 ... 1.6	21	100	-	3RV2011-1AA15		-	3RV2011-1AA25	
2	0.75	1.4 ... 2	26	100	\checkmark	3RV2011-1BA15		\checkmark	3RV2011-1BA25	
2.5	0.75	1.8 ... 2.5	33	100	-	3RV2011-1CA15		-	3RV2011-1CA25	
3.2	1.1	$2.2 \ldots 3.2$	42	100	-	3RV2011-1DA15		\checkmark	3RV2011-1DA25	
4	1.5	2.8 ... 4	52	100	-	3RV2011-1EA15		∇	3RV2011-1EA25	
5	1.5	3.5 ... 5	65	100	-	3RV2011-1FA15		\checkmark	3RV2011-1FA25	
	2.2	$4.5 \ldots 6.3$	82	100	-	3RV2011-1GA15		-	3RV2011-1GA25	
8	3	5.5 ... 8	104	100	-	3RV2011-1HA15		\checkmark	3RV2011-1HA25	
10	4	7 ... 10	130	100	-	3RV2011-1JA15		-	3RV2011-1JA25	
12.5	5.5	9... 12.5	163	100	\checkmark	3RV2011-1KA15		\checkmark	3RV2011-1KA25	
16	7.5	102) $\ldots 16$	208	55	-	3RV2011-4AA15		\checkmark	3RV2011-4AA25	
Size S0										
16	7.5	102) ... 16	208	55	-	3RV2021-4AA15		\checkmark	3RV2021-4AA25	
20	7.5	132) ... 20	260	55	$\stackrel{\rightharpoonup}{*}$	3RV2021-4BA15		-	3RV2021-4BA25	
22	11	162) ... 22	286	55	$\stackrel{\rightharpoonup}{*}$	3RV2021-4CA15		-	3RV2021-4CA25	
25	11	18) $\ldots 25$	325	55	$\stackrel{\rightharpoonup}{ }$	3RV2021-4DA15		\checkmark	3RV2021-4DA25	
28	15	$23 . . .28$	364	55	-	3RV2021-4NA15		-	3RV2021-4NA25	
$32^{3)}$	15	$27 . . .32$	400	55	-	3RV2021-4EA15		\checkmark	3RV2021-4EA25	
364)	18.5	$30 . . .36$	432	20	-	3RV2021-4PA15			--	
404)	18.5	$34 . . .40$	480	20	-	3RV2021-4FA15			--	

1) Guide value for 4-pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) The setting range of the thermal overload releases has been extended
3) Suitable for use with IE3/IE4 motors up to a starting current of 256 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S2.
4) The devices must not be mounted side-by-side and they must not be assembled with link modules with contactors. A lateral clearance of 9 mm is required. For use with IE3/IE4 motors we recommend using 3RV2 motor starter protectors size S2.

Auxiliary switches and other accessories can be ordered separately (see "Accessories" page 7/38 onwards).

Motor Starter Protectors/Circuit Breakers

CLASS 20, without auxiliary switches

1) Guide value for 4-pole standard motors at 50 Hz 400 VAC . The actual starting and rated data of the motor to be protected must be considered when selecting the units.

Auxiliary switches and other accessories can be ordered separately (see "Accessories" page 7/38 onwards).

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
For motor protection with overload relay function IE3/IE4 ready
Selection and ordering data
CLASS 10, with overload relay function (automatic RESET), without auxiliary switches

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Accessories for mounting on the right and 3RV2915 three-phase busbars cannot be used.
3) The setting range of the thermal overload releases has been extended.
4) Suitable for use with IE3/IE4 motors up to a starting current of 256 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S2.
5) Suitable for use with IE3/IE4 motors up to a starting current of 720 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S3.

Auxiliary switches and other accessories can be ordered separately (see "Accessories" page 7/38 onwards).

CLASS 10, with overload relay function (automatic RESET), without auxiliary switches (continued)

1) Guide value for 4-pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
${ }^{2)}$ Accessories for mounting on the right and 3RV2915 three-phase busbars cannot be used.

Auxiliary switches and other accessories can be ordered separately (see "Accessories" page 7/38 onwards).

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
For starter combinations IEB/IE4 ready
Selection and ordering data
Without auxiliary switches
PU (UNIT, SET, M) = 1
PS* $=1$ unit
PG $\quad=41 \mathrm{E}$

Rated current	Suitable for three-phase motors ${ }^{1)}$ with P	Thermal overload releases ${ }^{2)}$	Instantaneous overcurrent release	Short-circuit breaking capacity at 400 V AC	SD	Screw terminals	(i)	SD	Spring-type terminals	$\begin{aligned} & \infty \\ & \square \square \end{aligned}$
I_{n}		\square	$I>$			Article No.	Price per PU		Article No.	Price per PU
A	kW	A	A	kA	d			d		
Size S00										
0.16	0.04	Without	2.1	100	5	3RV2311-0AC10		5	3RV2311-0AC20	
0.2	0.06	Without	2.6	100	5	3RV2311-0BC10		5	3RV2311-0BC20	
0.25	0.06	Without	3.3	100	5	3RV2311-0CC10		5	3RV2311-0CC20	
0.32	0.09	Without	4.2	100	5	3RV2311-0DC10		5	3RV2311-0DC20	
0.4	0.09	Without	5.2	100	5	3RV2311-0EC10		5	3RV2311-0EC20	
0.5	0.12	Without	6.5	100	5	3RV2311-0FC10		5	3RV2311-0FC20	
0.63	0.18	Without	8.2	100	5	3RV2311-0GC10		5	3RV2311-0GC20	
0.8	0.18	Without	10	100	5	3RV2311-0HC10		5	3RV2311-0HC20	
1	0.25	Without	13	100	5	3RV2311-0JC10		5	3RV2311-0JC20	
1.25	0.37	Without	16	100	5	3RV2311-0KC10		5	3RV2311-0KC20	
1.6	0.55	Without	21	100	5	3RV2311-1AC10		5	3RV2311-1AC20	
2	0.75	Without	26	100	5	3RV2311-1BC10		5	3RV2311-1BC20	
2.5	0.75	Without	33	100	5	3RV2311-1CC10		5	3RV2311-1CC20	
3.2	1.1	Without	42	100	5	3RV2311-1DC10		5	3RV2311-1DC20	
4	1.5	Without	52	100	5	3RV2311-1EC10		5	3RV2311-1EC20	
5	1.5	Without	65	100	5	3RV2311-1FC10		5	3RV2311-1FC20	
6.3	2.2	Without	82	100	5	3RV2311-1GC10		5	3RV2311-1GC20	
8	3	Without	104	100	5	3RV2311-1HC10		5	3RV2311-1HC20	
10	4	Without	130	100	5	3RV2311-1JC10		5	3RV2311-1JC20	
12.5	5.5	Without	163	100	5	3RV2311-1KC10		5	3RV2311-1 KC20	
16	7.5	Without	208	55	5	3RV2311-4AC10		5	3RV2311-4AC20	
Size S0										
1.6	0.55	Without	21	100	5	3RV2321-1AC10		5	3RV2321-1 AC20	
2	0.75	Without	26	100	5	3RV2321-1BC10		5	3RV2321-1BC20	
2.5	0.75	Without	33	100	5	3RV2321-1CC10		5	3RV2321-1CC20	
3.2	1.1	Without	42	100	5	3RV2321-1DC10		5	3RV2321-1DC20	
4	1.5	Without	52	100	5	3RV2321-1EC10		5	3RV2321-1EC20	
5	1.5	Without	65	100	5	3RV2321-1FC10		5	3RV2321-1FC20	
6.3	2.2	Without	82	100	5	3RV2321-1GC10		5	3RV2321-1GC20	
8	3	Without	104	100	5	3RV2321-1HC10		5	3RV2321-1HC20	
10	4	Without	130	100	5	3RV2321-1JC10		5	3RV2321-1JC20	
12.5	5.5	Without	163	100	5	3RV2321-1KC10		5	3RV2321-1KC20	
16	7.5	Without	208	55	5	3RV2321-4AC10		5	3RV2321-4AC20	
20	7.5	Without	260	55	5	3RV2321-4BC10		5	3RV2321-4BC20	
22	11	Without	286	55	5	3RV2321-4CC10		5	3RV2321-4CC20	
25	11	Without	325	55	5	3RV2321-4DC10		5	3RV2321-4DC20	
28	15	Without	364	55	5	3RV2321-4NC10		5	3RV2321-4NC20	
$32^{3)}$	15	Without	400	55	5	3RV2321-4EC10		5	3RV2321-4EC20	
36^{4}	18.5	Without	432	20	5	3RV2321-4PC10			--	
404)	18.5	Without	480	20	5	3RV2321-4FC10			--	

1) Guide value for 4-pole standard motors at 50 Hz 400 VAC . The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) For overload protection of the motors, appropriate overload relays must be used.
${ }^{3)}$ Suitable for use with IE3/IE 4 motors up to a starting current of 256 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S2.
3) The devices must not be mounted side-by-side and they must not be assembled with link modules with contactors. A lateral clearance of 9 mm is required. For use with IE3/IE4 motors we recommend using 3RV2 motor starter protectors size S2.
Sizes S2 and S3 see page 7/33.
Auxiliary switches and other accessories can be ordered separately (see "Accessories" page 7/38 onwards).

Without auxiliary switches (continued)

Rated current	Suitable for three-phase motors ${ }^{1)}$ with P	Thermal overload releases ${ }^{2)}$	Instantaneous overcurrent release	Short-circuit breaking capacity at 400 V AC	SD	Screw terminals	\bigoplus	PU (UNIT, SET, M)	PS*	PG
$I_{\text {n }}$		ك	$I>$			Article No.	Price per PU			
A	kW	A	A	kA	d					
Size S2										
14	5.5	Without	208	65	2	3RV2331-4SC10		1	1 unit	41E
17	7.5	Without	260	65	2	3RV2331-4TC10		1	1 unit	41E
20	7.5	Without	260	65	2	3RV2331-4BC10		1	1 unit	41E
25	11	Without	325	65	2	3RV2331-4DC10		1	1 unit	41E
32	15	Without	416	65	2	3RV2331-4EC10		1	1 unit	41E
36	18.5	Without	520	65	2	3RV2331-4PC10		1	1 unit	41E
40	18.5	Without	585	65	2	3RV2331-4UC10		1	1 unit	41E
45	22	Without	650	65	2	3RV2331-4VC10		1	1 unit	41E
52	22	Without	741	65	2	3RV2331-4WC10		1	1 unit	41E
59	30	Without	845	65	2	3RV2331-4XC10		1	1 unit	41E
65	30	Without	845	65	2	3RV2331-4JC10		1	1 unit	41E
73	37	Without	949	65	2	3RV2331-4KC10		1	1 unit	41E
$80^{3)}$	37	Without	1040	65	2	3RV2331-4RC10		1	1 unit	41E
Size S2, with increased switching capacity										
14	5.5	Without	208	100	2	3RV2332-4SC10		1	1 unit	41E
17	7.5	Without	260	100	2	3RV2332-4TC10		1	1 unit	41E
20	7.5	Without	260	100	2	3RV2332-4BC10		1	1 unit	41E
25	11	Without	325	100	2	3RV2332-4DC10		1	1 unit	41E
32	15	Without	416	100	2	3RV2332-4EC10		1	1 unit	41E
36	18.5	Without	520	100	2	3RV2332-4PC10		1	1 unit	41E
40	18.5	Without	585	100	2	3RV2332-4UC10		1	1 unit	41E
45	22	Without	650	100	2	3RV2332-4VC10		1	1 unit	41E
52	22	Without	741	100	2	3RV2332-4WC10		1	1 unit	41E
59	30	Without	845	100	2	3RV2332-4XC10		1	1 unit	41E
65	30	Without	845	100	2	3RV2332-4JC10		1	1 unit	41E
	37	Without	949	100	2	3RV2332-4KC10		1	1 unit	41E
$80^{3)}$	37	Without	1040	100	2	3RV2332-4RC10		1	1 unit	41E
Size S3 NEW										
40	18.5	Without	520	65	2	3RV2341-4FC10		1	1 unit	41E
50	22	Without	650	65	2	3RV2341-4HC10		1	1 unit	41E
63	30	Without	819	65	2	3RV2341-4JC10		1	1 unit	41E
75	37	Without	975	65	2	3RV2341-4KC10		1	1 unit	41E
84	45	Without	1170	65	2	3RV2341-4RC10		1	1 unit	41E
93	45	Without	1300	65	2	3RV2341-4YC10		1	1 unit	41E
100	45,55	Without	1300	65	2	3RV2341-4MC10		1	1 unit	41E
Size S3, with increased switching capacity NEW										
40	18.5	Without	520	100	2	3RV2342-4FC10		1	1 unit	41E
50	22	Without	650	100	2	3RV2342-4HC10		1	1 unit	41E
63	30	Without	819	100	2	3RV2342-4JC10		1	1 unit	41E
75	37	Without	975	100	2	3RV2342-4KC10		1	1 unit	41E
84	45	Without	1170	100	2	3RV2342-4RC10		1	1 unit	41E
93	45	Without	1300	100	2	3RV2342-4YC10		1	1 unit	41E
100	45,55	Without	1300	100	2	3RV2342-4MC10		1	1 unit	41E

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
${ }^{2)}$ For overload protection of the motors, appropriate overload relays must be used.
2) Suitable for use with IE3/IE4 motors up to a starting current of 720 A . For higher starting currents we recommend using 3RV2 motor starter protectors size S3.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
For transformer protection
Selection and ordering data
CLASS 10, without auxiliary switches
Motor starter protectors for the protection of transformers with high inrush current

$\mathrm{PU}($ UNIT, SET, M)	$=1$
PS^{\star}	$=1$ unit
PG	$=41 \mathrm{E}$

1) The setting range of the thermal overload releases has been extended.

Auxiliary switches and other accessories can be ordered separately (see "Accessories" page 7/38 onwards).

Selection and ordering data
Without auxiliary switches
Circuit breakers for system protection and non-motor loads according to UL/CSA

1) Rated value 100 \% according to UL 489 and IEC 60947-2 ("100 \% rated breaker").
2) Values for $600 \mathrm{Y} / 347 \mathrm{~V} \mathrm{AC}$, see page $7 / 16$.

Lateral and transverse auxiliary switches can be ordered separately (see "Accessories" page 7/38 onwards)

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
For transformer protection according to UL 489/CSA C22.2 No. 5

Selection and ordering data

Without auxiliary switches

Circuit breakers for system and transformer protection according to UL/CSA, specially designed for transformers with high inrush current

Rated current ${ }^{1)}$	Thermal overload release (non-adjustable)	Instantaneous overcurrent release		SD	Screw terminals	$丹$	PU (UNIT, SET, M)	PS*	PG
$I_{\mathrm{n}}{ }^{\text {) }}$	ζ	I >	$I_{\text {bc }}$		Article No.	Price per PU			
A	A	A	kA	d					
Size S00									
0.16	0.16	3.3	65	5	3RV2811-0AD10		1	1 unit	41E
0.2	0.2	4.2	65	5	3RV2811-0BD10		1	1 unit	41E
0.25	0.25	5.2	65	5	3RV2811-0CD10		1	1 unit	41E
0.32	0.32	6.5	65	5	3RV2811-0DD10		1	1 unit	41E
0.4	0.4	8.2	65	5	3RV2811-0ED10		1	1 unit	41E
0.5	0.5	10	65	5	3RV2811-0FD10		1	1 unit	41E
0.63	0.63	13	65	5	3RV2811-0GD10		1	1 unit	41E
0.8	0.8	16	65	5	3RV2811-0HD10		1	1 unit	41E
1	1	21	65	5	3RV2811-0JD10		1	1 unit	41E
1.25	1.25	26	65	5	3RV2811-0KD10		1	1 unit	41E
1.6	1.6	33	65	5	3RV2811-1AD10		1	1 unit	41E
2	2	42	65	5	3RV2811-1BD10		1	1 unit	41E
2.5	2.5	52	65	5	3RV2811-1CD10		1	1 unit	41E
3.2	3.2	65	65	5	3RV2811-1DD10		1	1 unit	41E
4	4	82	65	5	3RV2811-1ED10		1	1 unit	41E
5	5	104	65	5	3RV2811-1FD10		1	1 unit	41E
6.3	6.3	130	65	5	3RV2811-1GD10		1	1 unit	41E
8	8	163	65	5	3RV2811-1HD10		1	1 unit	41E
10	10	208	65	5	3RV2811-1JD10		1	1 unit	41E
12.5	12.5	260	65	5	3RV2811-1KD10		1	1 unit	41E
15	15	286	65	5	3RV2811-4AD10		1	1 unit	41E
Size S0									
20	20	325	50	5	3RV2821-4BD10		1	1 unit	41E
22	22	364	50	5	3RV2821-4CD10		1	1 unit	41E
1) Rated value 100% according to UL 489 and IEC 60947-2 ("100 \% rated breaker").				Lateral and transverse auxiliary switches can be ordered separately (see "Accessories" page 7/38 onwards)					

Overview

Mounting location and function

The 3RV2 motor starter protectors/circuit breakers have three main contact elements. In order to achieve maximum flexibility, auxiliary switches, signaling switches, auxiliary releases and isolator modules can be supplied separately.

These components are easily fitted to the switches without the use of any tools according to requirements.

Overview graphic, see page 7/7.
Front side
Note:

- A maximum of four auxiliary contacts with
auxiliary switches can be mounted on each
motor starter protector/circuit breaker

Left-hand side
Notes:

- A maximum of four auxiliary contacts with
auxiliary switches can be mounted on each
motor starter protector/circuit breaker
- Lateral auxiliary switches (two contacts) and
signaling switches can be mounted separately
or together
- Signaling switches cannot be used for 3RV27
and 3RV28 circuit breakers

Transverse auxiliary switches, solid-state compatible transverse auxiliary switches

 $1 \mathrm{NO}+1 \mathrm{NC}$or
2 NO
1 CO
Lateral auxiliary switches One of the three lateral auxiliary switches can be mounted on the left side per (2 contacts) motor starter protector/circuit breaker. The contacts of the auxiliary switch
$1 \mathrm{NO}+1 \mathrm{NC}$
or
2 NO
or
2 NC
Lateral auxiliary switches One lateral auxiliary switch with four contacts can be mounted on the left side (4 contacts) per motor starter protector/circuit breaker. The contacts of the auxiliary switch $2 \mathrm{NO}+2 \mathrm{NC}$

Signaling switches

Tripping $1 \mathrm{NO}+1 \mathrm{NC}$ Short circuit $1 \mathrm{NO}+1 \mathrm{NC}$

An auxiliary switch block can be inserted transversely on the front. The overall width of the motor starter protectors/circuit breakers remains unchanged.

Right-hand side

Notes:

- One auxiliary release can be mounted per motor starter protector/circuit breaker
- Accessories cannot be mounted on the right-hand side of the 3RV21 motor starter protectors for motor protection with overload relay function

Top

Notes:

- Isolator modules cannot be used for 3RV27 and 3RV28 circuit breakers
- Isolator module for size S2:
- only with 3RV2 motor starter protectors/circuit breakers up to max. 65 A
- not with the transverse auxiliary switch
- Terminal screws of the transverse auxiliary switch are covered by the isolator module Recommendation: Lateral auxiliary switches should be used in combination with the isolator module, or the isolator module should not be mounted until the auxiliary switch has been wired up

For a complete overview of which accessories can be used for the various motor starter protectors/circuit breakers, see page 7/2.

Auxiliary releases

Shunt releases
For remote-controlled tripping of the motor starter protector/circuit breaker. The release coil should only be energized for short periods (see circuit diagrams).
or
Undervoltage releases
Trips the motor starter protector/circuit breaker when the voltage is interrupted
and prevents the motor from being restarted accidentally when the voltage is restored. Used for remote-controlled tripping of the motor starter protector/ circuit breaker.

Particularly suitable for EMERGENCY-STOP disconnection by way of corresponding EMERGENCY-STOP pushbuttons according to EN 60204-1
or
Undervoltage releases with leading auxiliary contacts 2 NO

Function and use as for the undervoltage release without leading auxiliary contacts, but with the following additional function: the auxiliary contacts will open in switch position OFF to deenergize the coil of the undervoltage release,
thus interrupting energy consumption. In the "tripped" position, these auxiliary contacts are not guaranteed to open. The leading contacts permit the motor starter protector/circuit breaker to reclose.
The width of the auxiliary release is 18 mm .
Isolator modules can be mounted to the upper connection side of the motor starter protectors.
The supply cable is connected to the motor starter protector through the isolator module.
The plug can only be unplugged when the motor starter protector is open and isolates all 3 poles of the motor starter protector from the network. The shockprotected isolation point is clearly visible and secured with a padlock to prevent reinsertion of the plug.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories

Mountable accessories

Selection and ordering data

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS	$=1$ unit (unless otherwise specified)
PG	$=41 \mathrm{E}$

Auxiliary switches ${ }^{11}$

CO	Transverse auxiliary switches For mounting on the front					
3RV2901-1E	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 2 \mathrm{NO} \end{aligned}$	S00 ... S3	-	3RV2901-1D 3RV2901-1E 3RV2901-1F	-	3RV2901-2E 3RV2901-2F
1080 eneo iníarmity	Solid-state compatible transverse auxiliary switches					

3RV2901-2E
transverse auxiliary

switches

For mounting on the front,
for operation in dusty atmo-
spheres and in solid-state
circuits with low operating
currents
1 CO
auxiliary switches
(PS* $=10$ units)
3RV2901-OH

3RV2901-1A 3RV2901-2A

Signaling switches ${ }^{2}$)

Signaling switches SOO ... S3 \quad 3RV2921-1M $>$ 3RV2921-2M

Lateral auxiliary switches

For mounting on the left

$1 \mathrm{NO}+1 \mathrm{NC}$	S00 ... S3	-	3RV2901-1A	-	3RV2901-2A
2 NO		\checkmark	3RV2901-1B	\bigcirc	3RV2901-2B
2 NC		-	3RV2901-1C	-	3RV2901-2C
NO+		2	3RV2901-1		

One signaling switch can be mounted on the left per motor starter protector.
Separate tripped and short-circuit alarms, 1 NO + 1 NC each

1) Each motor starter protector/circuit breaker can be fitted with one transverse and one lateral auxiliary switch. The lateral auxiliary switch with $2 N O+2 N C$ is used without a transverse auxiliary switch.
2) This accessory cannot be used for the 3RV27 and 3RV28 circuit breakers (sizes S00, SO, S3).
3) The isolator module for size S2 can be used only with 3RV2 motor starter protectors/circuit breakers up to max. 65 A . Similarly, it cannot be used with the transverse auxiliary switch

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

$\mathrm{PU}(\mathrm{UNIT}, \mathrm{SET}, \mathrm{M})$	$=1$
PS^{*}	$=1$ unit
PG	
	$=41 \mathrm{E}$

3RV2902-1AVO

3RV2902-2AV0

3RV2922-1CP0

3RV2902-2DB0

Rated control supply voltage $U_{\text {s }}$					For motor starter protectors/ circuit breakers	SD	Screw terminals	\bigoplus	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \square \end{aligned}$
$\begin{aligned} & \mathrm{AC} \\ & 50 \mathrm{~Hz} \end{aligned}$	AC $60 \mathrm{~Hz}$	AC $50 / 60 \mathrm{~Hz}$ 100% ON period ${ }^{1)}$	$\begin{aligned} & \mathrm{AC} / \mathrm{DC} \\ & 50 / 60 \mathrm{~Hz}, \\ & \mathrm{DC} \\ & 5 \mathrm{~s} \mathrm{ON} \text { period }{ }^{21} \end{aligned}$	DC							
V	V	V	V	V	Size	d	Article No.	Price per PU	d	Article No.	Price per PU
Auxiliary releases ${ }^{3}$											
Undervoltage releases											
--	--	--	--	24	S00 ... S3	2	3RV2902-1AB4			--	
24	--	--	--	--	S00 ... S3	2	3RV2902-1AB0			--	
110	120	--	--	--	S00 ... S3	2	3RV2902-1AF0			--	
--	208	--	--	--	S00 ... S3	2	3RV2902-1AM1			--	
230	240	--	--	--	S00 ... S3	-	3RV2902-1AP0		\checkmark	3RV2902-2AP0	
400	440	--	--	--	S00 ... S3	-	3RV2902-1AVO		-	3RV2902-2AVO	
415	480	--	--	--	S00 ... S3	2	3RV2902-1AV1			--	
500	600	--	--	--	S00 ... S3	2	3RV2902-1AS0			--	
Undervoltage releases with leading auxiliary contacts 2 NO											
24	24	--	--	--	S00 ... S3	5	3RV2922-1CB0			--	
230	240	--	--	--	S00 ... S3	2	3RV2922-1CP0		2	3RV2922-2CP0	
400	440	--	--	--	S00 ... S3	2	3RV2922-1CV0		2	3RV2922-2CV0	
415	480	--	--	--	S00 ... S3	2	3RV2922-1CV1		2	3RV2922-2CV1	
Shunt releases											
--	--	20... 24	20... 70	--	S00 ... S3	-	3RV2902-1DB0		\checkmark	3RV2902-2DB0	
--	--	$90 \ldots 110$	$70 \ldots 190$	--	S00 ... S3	2	3RV2902-1DF0		2	3RV2902-2DF0	
--	--	210... 240	190... 330	--	S00 ... S3	-	3RV2902-1DP0		-	3RV2902-2DP0	
--	--	350... 415	$330 \ldots 500$	--	S00 ... S3	2	3RV2902-1DV0			--	
--	--	500	500	--	S00 ... S3	2	3RV2902-1DS0			--	

1) The voltage range is valid for 100% (infinite) ON period. The response voltage lies at 0.9 of the lower limit of the voltage range.
2) The voltage range is valid for 5 s ON period at AC $50 / 60 \mathrm{~Hz}$ and DC. The response voltage lies at 0.85 of the lower limit of the voltage range.
${ }^{3)}$ One auxiliary release can be mounted on the right per motor starter protector/circuit breaker (does not apply to 3RV21 motor starter protectors with overload relay function).

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

Busbar accessories

Overview

Insulated three-phase busbar system

Three-phase busbar systems provide an easy, time-saving and clearly arranged means of feeding 3RV2 motor starter protectors/circuit breakers with screw terminals. Different versions are available for sizes S00 to S2 and can be used for the various different types of motor starter protectors/circuit breakers (size SO up to 32 A).
The 3RV1915 and 3RV1935 three-phase busbar systems are generally unsuitable for the 3RV21 motor starter protectors for motor protection with overload relay function and 3RV27 and 3RV28 circuit breakers according to UL 489/CSA C22.2 No. 5.
The busbars are suitable for between two and five motor starter protectors/circuit breakers. However, any kind of extension is possible by clamping the tags of an additional busbar (rotated by 180°) underneath the terminals of the respective last motor starter protector/circuit breaker.

A combination of motor starter protectors/circuit breakers of size SOO and SO is possible. The motor starter protectors/circuit breakers are supplied by appropriate infeed terminals

SIRIUS three-phase busbar system size S00/S0

SIRIUS three-phase busbar system size S2
The three-phase busbar systems are finger-safe. They are designed for any short-circuit stress which can occur at the output side of connected motor starter protectors/circuit breakers

The three-phase busbar systems can also be used to construct "Type E Starters" according to UL/CSA. Special infeed terminals must be used for this purpose, however (see "Selection and ordering data", page 7/41).

8US busbar adapters for $\mathbf{6 0} \mathbf{~ m m}$ systems

The motor starter protectors/circuit breakers are mounted directly with the aid of busbar adapters on busbar systems with 60 mm center-to-center clearance in order to save space and to reduce infeed times and costs
Busbar adapters for busbar systems with 60 mm center-tocenter clearance are suitable for copper busbars with a width of 12 mm to 30 mm . The busbars can be 5 mm or 10 mm thick
The motor starter protectors/circuit breakers are snapped onto the adapter and connected on the line side. This prepared unit is then plugged directly onto the busbar system, and is thus connected both mechanically and electrically at the same time.
For further busbar adapters for snap-mounting direct-on-line starters and reversing starters as well as additional accessories such as incoming and outgoing terminals, flat copper profile etc., see Catalog LV 10.

SIRIUS load feeders with busbar adapters snapped onto busbars

Selection and ordering data

1) Not suitable for 3 RV21 motor starter protectors for motor protection with
2) For 3RV2 motor starter protectors with auxiliary switches with $1 \mathrm{NO}+1 \mathrm{NC}$, overload relay function and for 3RV27 and 3RV28 circuit breakers 2 NO and 2 NC mounted on the left (9 mm wide) according to UL 489/CSA C22.2 No.5.
3) Approved for motor starter protectors size SO with $I_{\mathrm{n}} \leq 32 \mathrm{~A}$.
4) For 3 RV2 motor starter protectors without accessories mounted on the
5) For 3RV2 motor starter protectors with mounted accessories (18 mm wide). Auxiliary switches with $2 \mathrm{NO}+2 \mathrm{NC}$ or signaling switch (mounted on the side.

	Conductor cross-section			Tightening torque	For motor starter protectors/ circuit breakers	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
	Solid or stranded	Finely stranded with end sleeve	AWG cables, solid or stranded								
	mm^{2}	mm^{2}	AWG	Nm	Size	d					
Three-phase infeed terminals											
3RV2925-5AB	$\begin{aligned} & \text { Connection } \\ & 2.5 \ldots 25 \\ & 2 \times \\ & (2.5 \ldots 50)^{1),} \\ & 1 \times \\ & (2.5 \ldots 70)^{1)} \end{aligned}$	$\begin{aligned} & \text { from top } \\ & 2.5 \ldots 16 \\ & 2 \times \\ & (2.5 \ldots 35)^{1)} \text {, } \\ & 1 \times \\ & (2.5 \ldots 50)^{1)} \end{aligned}$	$\left.\begin{array}{l} 10 \ldots 4 \\ 2 x \\ \left.(10 \ldots 1 / 0)^{1}\right) \\ 1 \times \\ (10 \ldots l \end{array}\right)$	$\begin{aligned} & 3 \ldots 4 \\ & 4 \ldots 6 \end{aligned}$	$\begin{aligned} & \text { s00, so } \\ & \text { s2 } \end{aligned}$	$\stackrel{\rightharpoonup}{\square}$	3RV2925-5AB 3RV2935-5A		1 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 41 \mathrm{E} \\ & 41 \mathrm{E} \end{aligned}$
3RV2915-5B	Connection Terminal is c into account $2.5 \ldots 25$	rom below nnected in pla $2.5 \ldots 16$	ce of a switch, $10 \ldots 4$	ake space Input: 4, Output: 2 ... 2.5	quirement soo, so	-	3RV2915-5B		1	1 unit	41E
Three-phase infeed terminals for constructing "Type E Starters" "											
	$\begin{aligned} & \text { Connection } \\ & 2.5 \ldots 25 \\ & 2 \times \\ & (2.5 \ldots 50)^{1),} \\ & 1 \times \\ & (2.5 \ldots 70)^{1)} \end{aligned}$	$\begin{aligned} & \text { from top } \\ & 2.5 \ldots 16 \\ & 2 \times \\ & (2.5 \ldots 35)^{1)} \text {, } \\ & 1 \times \\ & (2.5 \ldots 50)^{1)} \end{aligned}$	$\begin{aligned} & 10 \ldots 4 \\ & 2 x \\ & \left.(10 \ldots 1 / 0)^{1}\right) \\ & 1 \times \\ & (10 \ldots 2 / 0)^{1)} \end{aligned}$	$\begin{aligned} & 3 \ldots 4 \\ & 4 \ldots 6 \end{aligned}$	$\begin{aligned} & \text { soo, so } \\ & \text { s2 } \end{aligned}$	$\begin{aligned} & 2 \\ & \end{aligned}$	3RV2925-5EB 3RV2935-5E		1 1	1 unit 1 unit	$\begin{aligned} & 41 \mathrm{E} \\ & 41 \mathrm{E} \end{aligned}$

[^3] point, both cross-sections must be in the range specified

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories
Busbar accessories

Busbar adapters

8US1251-5DS10

8US1251-5DT11

8US1250-5AS10

8US1250-5AT10

8US1211-4RT00

For motor starter protectors/circuit breakers	Rated current	Connecting cable	Adapter length	Adapter width	Rated voltage	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
Size	A	AWG	mm	mm	V	d					

Busbar adapters for 60 mm systems
For copper busbars according to DIN 46433
Width: 12 mm and 30 mm
Thickness: 5 mm and 10 mm
also for T and double-T special profiles

- For motor starter protectors/circuit breakers with screw terminals

SOO, S0 ${ }^{2}$	25	12	200	45	690	2
$\mathrm{SO}^{2)}$	32	10	260	45	690	2
S2	80	4	200	55	69	5
S2	80	4	260	55	690	5
S2 ${ }^{1)}$	80	4	260	118	690	5
S3	100/70 ${ }^{3}$	4	215	72	690/600 ${ }^{3}$	2

- For motor starter protectors/circuit breakers with spring-type terminals

							terminals			
SOO, SO^{2})	25	12	200	45	690	2	8US1251-5DS11	1	1 unit	140
S00, SO ${ }^{2}$	25	12	260	45	690	2	8US1251-5DT11	1	1 unit	140
SO^{2})	32	10	260	45	690	2	8US1251-5NT11	1	1 unit	140
Accessories										
Device holders	--	--	200	45	--	2	8US1250-5AS10	1	1 unit	140
For lateral mounting to busbar adapters	--	--	260	45	--	2	8US1250-5AT10	1	1 unit	140
Side modules For widening of busbar adapters	--	--	200	9	--	2	8US1998-2BJ10	1	10 units	140
Spacers For fixing the feeder onto the busbar adapter	--	--	--	--	--	2	8US1998-1BA10	1	50 units	140
Vibration and shock kits For high vibration and shock loads										
S00/S0	--	--	--	--	--	2	8US1998-1CA10	1	2 units	140
S2	--	--	--	--	--	5	8US1998-1DA10	1	1 unit	140

1) For the assembly of feeders for reversing starters comprising a motor starter protector and two contactors
2) Also approved for 3RV27, 3RV28 according to UL.
3) Values according to UL/CSA:
-Rated current: 70 A at 600 V AC
Short-circuit breaking capacity:
$480 \mathrm{VAC}: 65 \mathrm{kA}$, up to $I_{\mathrm{n}}=30 \mathrm{~A}$
480 Y/277 V AC: 65 kA
600 Y/3 47 V AC: 20 kA

For additional busbar adapters, see Catalog LV 10.

Overview

Door-coupling rotary operating mechanisms

Motor starter protectors/circuit breakers with a rotary operating mechanism can be mounted in a control cabinet and operated externally by means of a door-coupling rotary operating mechanism. When the cabinet door with motor starter protector/circuit breaker is closed, the operating mechanism is coupled. When the motor starter protector/circuit breaker closes, the coupling is locked which prevents the door from being opened unintentionally. This interlock can be defeated by the maintenance personnel. In the OPEN position, the rotary operating mechanism can be secured against reclosing with up to three padlocks. Inadvertent opening of the door is not possible in this case either.

SIRIUS 3RV2926-OK door-coupling rotary operating mechanism

SIRIUS 3RV2926-2B door-coupling rotary operating mechanism for arduous conditions

Remote motorized operating mechanisms

3RV motor starter protectors are manually operated switching devices. They automatically trip in response to an overload or short circuit. Intentional remote-controlled tripping is possible by means of a shunt release or an undervoltage release. Reclosing is only possible directly at the motor starter protector/circuit breaker.
The remote motorized operating mechanism allows the motor starter protectors/circuit breakers to be opened and closed by electrical commands. This enables a load or an installation to be isolated from the network or reconnected to it from an operator panel.

If the motor starter protector/circuit breaker is tripped as a result of overload or short circuit, it will be in the tripped position. For reclosing, the remote motorized operating mechanism must first be set manually or electrically to the 0 position (electrically by means of the Open command). Then it can be reclosed.
The remote motorized operating mechanism is available for motor starter protectors/circuit breakers in size S3 for control voltages of 230 VAC and 24 V DC. The motor starter protector/ circuit breaker is fitted into the remote motorized operating mechanism as shown in the drawing.
In the "MANUAL" position, the motor starter protector/circuit breaker in the remote motorized operating mechanism can continue to be switched manually on site. In the "AUTOMATIC" position, the motor starter protector/circuit breaker is switched by means of electrical commands. The switching command must be applied for a minimum of 100 ms . The remote motorized operating mechanism closes the motor starter protector after a maximum of 1 s . On voltage failure during the switching operation it is ensured that the motor starter protector/circuit breaker remains in the "OPEN" or "CLOSED" position. In the "MANUAL" and "OFF" position, the remote motorized operating mechanism can be locked with a padlock.

RESET function

The RESET button on the motorized operating mechanism serves to reset any 3RV2921-1M signaling switch that might be installed.

SIRIUS 3RV1946-3A.. remote motorized operating mechanism

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories

Rotary operating mechanisms

Technical specifications
Remote motorized operating mechanisms

Type		3RV1946
Max. power consumption - At $U_{S}=24 \mathrm{~V} D C$ - At $U_{\mathrm{S}}=230 \mathrm{~V} \mathrm{AC}$	$\begin{aligned} & \text { W } \\ & \text { VA } \end{aligned}$	$\begin{aligned} & 48 \\ & 170 \end{aligned}$
Operating range		$0.85 \ldots 1.1 \times U_{s}$
Minimum command duration at U_{S}	S	0.1
Max. command duration		Unlimited (uninterrupted operation)
Max. total make/break time, remote-controlled	S	2
Ready to reclose after approx.	s	2.5
Switching frequency	1/h	25
Internal back-up fuse - 230 V AC - 24 V DC	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$
Connection type of control cables		Plug-in connectors with screw terminals
Shock resistance acc. to IEC 60068-2-27	g / ms	25/11 (square and sine pulse)

Selection and ordering data

Overview

More information

System Manual "SIRIUS - System Overview", see
https://support.industry.siemens.com/cs/ww/en/view/60311318

Accessories for "Self-Protected Combination Motor

 Controllers (Type E)" according to UL 508/UL 60947-4-1The 3RV20 motor starter protectors with screw terminals are approved according to UL 508/UL 60947-4-1 as "Self-Protected Combination Motor Controllers (Type E)".
This requires increased through air and over surface spacing (1 inch and 2 inches respectively) at the input side of the device, which are achieved by mounting a terminal block or a phase barrier.

SIRIUS 3RV2928-1H terminal block

SIRIUS 3RT2946-4GA07 terminal block (type E)

SIRIUS 3RV2928-1K phase barrier

Manual "SIRIUS - SIRIUS 3RV2 Motor Starter Protectors", see
https://support.industry.siemens.com/cs/ww/en/view/60279172

Motor starter protectors/circuit breakers	Size	Essential accessories for "Self-Protected Combination Motor Controllers (Type E)" according to UL 508/UL 60947-4-1
3RV201., 3RV202.	S00/S0	3RV2928-1H terminal block or 3RV2928-1K phase barrier
$\begin{aligned} & \text { 3RV2031-4B.1., } \\ & \text { 3RV231-4D.1., } \\ & \text { 3RV2031-4.1., } \\ & \text { 3RV2031-4P.1., } \\ & \text { 3RV2031-4S.1., } \\ & \text { 3RV2031-4.1., } \\ & \text { 3RV2031-4.1., } \\ & \text { 3RV2031-4V.1., } \end{aligned}$	S2	--
3RV2031-4J.1., 3RV2031-4K.1., 3RV2031-4R.1., 3RV2031-4W.1. 3RV2031-4X.1. 3RV2032	S2	3RV2938-1K phase barrier
3RV204.	S3	3RT2946-4GA07 terminal block

-- No accessories needed
Special three-phase infeed terminals are required for constructing "Type E Starters" with an insulated three-phase busbar system (see "Busbar Accessories", page 7/41).
The 3RV29 infeed system also enables the assembly of
"Type E Starters", see page 7/55 onwards.
Note:
According to CSA, these terminal blocks and the phase barriers can be omitted when the device is used as a "Self-Protected Combination Motor Controller (Type E)".

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories

Mounting accessories

Link modules

Feeders can be easily assembled from single devices with the help of the link modules. The following table shows the different combination options for devices with screw or spring-type terminals.

Combination devices	3RV2 motor starter protectors/ circuit breakers Size	3RT2 contactors; 3RW30, 3RW40 soft starters; 3RF34 solid-state contactors Size	Link modules Screw terminals	Spring-type terminals
Link modules for connecting switching devices to 3RV2 motor starter protectors/circuit breakers ${ }^{1 \text {) }}$				
3RT2 contactors with AC or DC coil	SOO	S00	3RA1921-1DA00	3RA2911-2AA00
	So	SOO		--
	S2	S2	3RA2931-1AA00	--
	S3 ${ }^{\text {) }}$	S3 ${ }^{\text {) }}$	3RA1941-1AA00	--
3RT2 contactors with AC coil	SO	SO	3RA2921-1AA00	3RA2921-2AA003)
	SOO	So		--
3RT2 contactors with DC coil	SO	So	3RA2921-1BA00	3RA2921-2AA00
	SOO	SO		--
3RW30 soft starters	S00	S00	3RA2921-1BA00	3RA2911-2GA00
	So	S00		--
3RW30/3RW40 soft starters	So	So	3RA2921-1BA00	3RA2921-2GA00
	SOO	SO		--
	S2 ${ }^{4)}$	S2 ${ }^{4)}$	3RA2931-1AA00	--
	S3 ${ }^{5)}$	S3 ${ }^{5)}$	3RA1941-1AA00	--
3RF34 solid-state contactors	S00/S0	S00	3RA2921-1BA00	--
Hybrid link modules for connecting contactors with spring-type terminals to 3RV2 motor starter protectors/circuit breakers with screw terminals ${ }^{6}$)				
3RT2 contactors with AC or DC coil	SOO	S00	3RA2911-2FA00	--
	SO	SO	3RA2921-2FA00	--

-- Version not possible

1) The link modules cannot be used for 3RV2.21-4PA1., 3RV2.21-4FA1. 3RV2.31-4K.1., 3RV2.31-4R.1., 3RV2.32-4K.1., 3RV2.32-4R.1., 3RV27 and 3RV28 motor starter protectors/circuit breakers.
2) To assemble the feeder between a motor starter protector and a contactor in size S3, the 3RA2942-1A00 standard mounting rail adapter must be used.
${ }^{3)}$ A spacer for height compensation on AC contactors, size SO, is optionally available, see page $7 / 49$.
3) To assemble the feeder between a motor starter protector and a soft starter in size S2, the 3RA2932-1CA00 standard mounting rail adapter must be used.
4) It is only permissible to assemble the feeder between the motor starter protector and the soft starter in size S3 on a mounting plate
5) The motor starter protector to contactor hybrid link modules cannot be used for the 3RV2.21-4PA1., 3RV2.21-4FA1., 3RV27 and 3RV28 motor starter protectors/circuit breakers. They are suitable only for constructing direct-on-line starters

Note:

- Link modules can be used in
- Sizes S00 and SO: up to max. 32 A
- Size S2: up to max. 65 A
- Hybrid link modules can be used in - Sizes S00 and SO: up to max. 32 A

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers Accessories

Mounting accessories

Selection and ordering data

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories

Mounting accessories

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers Accessories

Mounting accessories

Link modules

Actuating voltage of contactor	Size		SD	Article No.	Price	PU	PS*
	3RT2 contactors	3RV2 motor starter protectors/circuit breakers			per PU	SET, M)	

1) The link modules for motor starter protector to contactor cannot be used for 3RV2.21-4PA1., 3RV2.21-4FA1., 3RV2.31-4K.1., 3RV2.31-4R.1. 3RV2.32-4K.1., 3RV2.32-4R.1., 3RV27 and 3RV28 motor starter protectors/ circuit breakers.
2) A spacer for height compensation on $A C$ contactors size $S O$ is optionally available.

Note:
Link modules can be used in

- Sizes S00 and S0 up to max. 32 A
- Size S2 up to max. 65 A

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories

Mounting accessories

1) The link modules for motor starter protector to soft starter and motor starter protector to solid-state contactor cannot be used for 3RV2.21-4PA1. 3RV2.21-4FA1., 3RV2.31-4K.1., 3RV2.31-4R.1., 3RV2.32-4K.1., 3RV2.32-4R.1., 3RV27 and 3RV28 motor starter protectors/circuit breakers
2) To assemble the feeder between a motor starter protector and a soft starter in size S2, the 3RA2932-1AC00 standard mounting rail adapter must be used.
3) It is only permissible to assemble the feeder between the motor starter protector and the soft starter in size S3 on a mounting plate.

Note:
Link modules can be used in

- Sizes S00 and S0 up to max. 32 A
- Size S2 up to max. 65 A

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers Accessories

Mounting accessories

Hybrid link modules in sizes SOO and SO can be used up to max. 32 A.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories
Enclosures and front plates

Overview

Enclosures

For stand-alone installation of 3RV20 to 3RV24 motor starter protectors size $\mathrm{SOO}\left(I_{\mathrm{n} \text { max }}=16 \mathrm{~A}\right)$, S0 $\left(I_{\mathrm{n} \text { max }}=32 \mathrm{~A}\right)$ and S2 ($I_{\mathrm{n} \text { max }}=65 \mathrm{~A}$), cast aluminum enclosures for surface mounting and molded-plastic enclosures for flush mounting are available in various dimensions.

When installed in a molded-plastic enclosure the motor starter protectors have a rated operational voltage U_{e} of 500 V .
The enclosures for surface mounting have the degree of protection IP55; the enclosures for flush mounting also comply with the degree of protection IP55 at the front (the flush-mounted section complies with IP20).

Enclosures for surface mounting

[^4]All enclosures are equipped with N and PE terminals. There are two knock-out cable entries for cable glands at the top and two at the bottom; also on the rear corresponding cable entries are scored. There is a knockout on the top of the enclosure for indicator lights that are available as accessories.
The narrow enclosure can accommodate a motor starter protector without accessories, with transverse auxiliary switch and with lateral auxiliary switch. There is no provision for installing a motor starter protector with a signaling switch.

With size S00 to S2 circuit breakers the molded-plastic enclosures are equipped with a rotary operating mechanism.
The enclosures can be supplied with either a black rotary operating mechanism or with an EMERGENCY-STOP rotary operating mechanism with a red/yellow knob.
In the OFF setting, all rotary operating mechanisms can be locked with up to three padlocks.

Front plates

Motor starter protectors are frequently required to be actuated in any enclosure. Front plates equipped with a rotary operating mechanism for 3RV20 to 3RV24 motor starter protectors sizes S00 to S 3 are available for this purpose.
A holder for the motor starter protectors size SOO and SO, into which the motor starter protectors can be snapped, is available for the front plates.

[^5]Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers Accessories

Enclosures and front plates

Selection and ordering data

	Version	Degree of protection	Integrated terminals	Width	For 3RV20 to 3RV24 motor starter protectors	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
				mm	Size	d					
Molded-plastic enclosures for surface mounting ${ }^{1 /}$											
	With rotary operating mechanism, lockable in 0 position	IP55	N and PE/ground	54 (for motor starter protector + lateral auxiliary switch)	S00, SO	-	3RV1923-1CA00		1	1 unit	41E
3RV1933-1DA00				72 (for motor starter protector + lateral auxiliary switch ${ }^{2}$ + auxiliary release)	S00, SO	\checkmark	3RV1923-1DA00		1	1 unit	41E
3RV1933-1DA00				82 (for motor starter protector + lateral auxiliary switch ${ }^{2}$) + auxiliary release)	S2	2	3RV1933-1DA00		1	1 unit	41E
	With EMERGENCY- STOP rotary operating mechanism, lockable in 0 position	IP55	N and PE/ground	54 (for motor starter protector + lateral auxiliary switch)	S00, So	-	3RV1923-1FA00		1	1 unit	41E
3RV1923-1FA00,				72 (for motor starter protector + lateral auxiliary switch ${ }^{2}$) + auxiliary release)	S00, SO	-	3RV1923-1GA00		1	1 unit	41E
$\begin{aligned} & \text { 3RV1923-1FA00, } \\ & \text { 3RV1933-1GA0O } \end{aligned}$				82 (for motor starter protector + lateral auxiliary switch ${ }^{2}$) + auxiliary release)	S2	2	3RV1933-1GA00		1	1 unit	41E
Cast aluminum enclosures for surface mounting ${ }^{1)}$											
	With rotary operating mechanism, lockable in 0 position	IP65	$\mathrm{PE}^{3)}$	72 (for motor starter protector + lateral auxiliary switch ${ }^{2)}$ + auxiliary release)	S00, SO	-	3RV1923-1DA01		1	1 unit	41E
3RV1923-1DA01	With EMERGENCY- STOP rotary operating mechanism, lockable in 0 position		$\mathrm{PE}^{3)}$	72 (for motor starter protector + lateral auxiliary switch ${ }^{2)}$ + auxiliary release)	SOO, SO	-	3RV1923-1GA01		1	1 unit	41E
Molded-plastic enclosures for flush mounting ${ }^{4)}$											
	With rotary operating mechanism, lockable in 0 position	IP55 (front side)	N and PE/ground	72 (for motor starter protector + lateral auxiliary switch ${ }^{2)}$ + auxiliary release)	S00, SO	2	3RV1923-2DA00		1	1 unit	41E
3RV1923-2DA00	With EMERGENCY- STOP rotary operating mechanism, lockable in 0 position	IP55 (front side)	N and PE/ground	72 (for motor starter protector + lateral auxiliary switch ${ }^{2}$ + auxiliary release)	S00, SO	2	3RV1923-2GA00		1	1 unit	41E
1) The rear cable glands cannot be used on 3RV2.11-...2. and 3RV2.21-...2. devices with spring-type terminals.					If required, an additional N terminal can be mounted (e.g. 8WA1011-1BG11).						

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers
Accessories
Enclosures and front plates

Overview

The 3RV29 infeed system is a convenient means of energy supply and distribution for a group of several motor starter protectors or complete load feeders with screw or spring-type terminals in sizes S00 and SO. Motor starter protectors or load feeders with a rated current of maximum 32 A each can be used. 3RV21, 3RV27 and 3RV28 motor starter protectors/circuit breakers cannot be deployed in this system.
The system is based on a basic module complete with a lateral incoming unit (three-phase busbar with infeed). This infeed with spring-type terminals is mounted on the right or left, depending on the version, and can be supplied with a maximum conductor cross-section of $25 \mathrm{~mm}^{2}$ (with end sleeve). A basic module has two sockets onto each of which a motor starter protector can be snapped.
Expansion modules (three-phase busbars for system expansion) are available for extending the system. The individual modules are connected through an expansion plug.
The electrical connection between the three-phase busbars and the motor starter protectors is implemented through plug-in connectors. The complete system can be mounted on a TH 35
standard mounting rail to IEC 60715, and can be expanded as required up to a maximum current carrying capacity of 63 A .
The system is mounted extremely quickly and easily thanks to the simple plug-in technique. Thanks to the lateral infeed, the system also saves space in the control cabinet. The additional height required for the infeed unit is only 30 mm . The alternative infeed possibilities on each side offer a high degree of flexibility for configuring the control cabinet: Infeed on left-hand or righthand side as well as infeed on one side and outfeed on the other side to supply further loads are all possible. A terminal block with spring-type connections in combination with a standard mounting rail enables the integration of not only SIRIUS motor starter protectors but also single-phase, 2-phase and 3-phase components such as 5 SY miniature circuit breakers or SIRIUS relay components.
The 3RV29 infeed system is approved in accordance with IEC to 500 V . It is also UL-approved and authorized for "Self-Protected Combination Motor Controller" (Type E starter) as well as for Type F starter (Type E starter + contactor).

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

3RV29 infeed system

(1) Three-phase busbars with infeed

A three-phase busbar with infeed unit is required for connecting the incoming supply. These modules comprise one infeed module and two sockets which each accept one motor starter protector. A choice of two versions with infeed on the left or right is available. The infeed is connected to spring-type terminals. They permit an infeed with conductor cross-sections of up to $25 \mathrm{~mm}^{2}$ with end sleeve. An end cover is supplied with each module.

(2) Three-phase busbars for system expansion

The three-phase busbars for system expansion support expansion of the system. There is a choice of modules with two or three sockets. The system can be expanded as required up to a maximum current carrying capacity of 63 A . An expansion plug is supplied with each module.

(3) Expansion plug

The expansion plug is used for electrical connection of adjacent three-phase busbars. The current carrying capacity of this plug equals 63 A. One expansion plug is supplied with each threephase busbar for system expansion. Additional expansion plugs are therefore only required as spare parts.

(3)b Extra-wide expansion plug

The wide expansion plug makes the electrical connection between two three-phase busbars, thus performing the same function as the 3RV2917-5BA00 expansion plug; the electrical characteristics (e.g. a current carrying capacity of 63 A) are identical.

The 3RV2917-5E expansion plug is 10 mm wider than the 3RV2917-5BA00 expansion plug, hence in the plugged state there is a distance of 10 mm between the connected threephase busbars. This distance can be used to lay the auxiliary current and control current wiring ("wiring duct"). The motor starter protector and contactor can be wired from underneath, which means that the complete cable duct above the system can be omitted.

(4) End cover

The end cover is used to cover the three-phase busbar at the open end of the system. This cover is therefore only required once for each system. An end cover is supplied with each three-phase busbar system with infeed. Further end covers are therefore only required as spare parts.

(5) Terminal block for device infeed

A new addition to the system is a connector for outfeeding to a device slot within a module. This offers the option not only of connecting three-phase loads to the system, but also of integrating single-phase loads into the infeed system.

(6) Plug-in connector

The plug-in connector is used for the electrical connection between the three-phase busbar and the 3RV2 motor starter protector. These plug-in connectors are available for screw or spring-type terminals.

(7) Contactor base

Load feeders can be assembled in the system using the SOO and SO contactor base. The contactor bases are suitable for contactors sizes SOO and SO with spring-type and screw terminals and are simply snapped onto the three-phase busbars. Direct-on-line starters and reversing starters are possible. One contactor base is required for direct-on-line starters and two are required for reversing starters.
To assemble load feeders for reversing starters, the contactor bases can be arranged alongside each other (90 mm overall width). In this case the mechanical interlocking of the contactors is possible. The SO contactor bases are also suitable for soft starters size SOO and SO with screw terminal

The infeed system is designed for mounting onto a TH 35 standard mounting rail with 7.5 mm overall depth. This standard mounting rail gives the contactor base a stable mounting surface to sit on. If standard mounting rails with a depth of 15 mm are used, the spacer connected to the bottom of the contactor base must be knocked out and plugged into the standard mounting rail mating piece, which is also located on the underside. Then the contactor base also has a stable mounting surface. When standard mounting rails with a depth of 7.5 mm are used, the spacer has no function and can be removed.
The link modules are used for direct start load feeders, in which case the use of a contactor base is not absolutely necessary. Motor starter protector and contactor assemblies can then be directly snapped onto the sockets of the three-phase busbars For feeders of sizes SOO and SO, the corresponding 3RA1921-1...., 3RA2911-2...., 3RA2921-1.... or 3RA2921-2... link modules should generally be used.

(8) Terminal block

The 3RV2917-5D terminal block enables the integration of not only SIRIUS motor starter protectors but also single-phase, 2 -phase and 3 -phase components. The three phases can be fed out of the system using the terminal block; which means that single-phase loads can also be integrated in the system. The terminal block is plugged into the slot of the expansion plug and thus enables outfeeding from the middle or end of the infeed system. The terminal block can be rotated through 180° and be locked to the support modules of the infeed system. In addition, the 45 mm wide TH 35 3RV1917-7B standard mounting rail option for screwing onto the support plate facilitates plugging the single-phase, two-phase and three-phase components onto the infeed system.

Technical specifications

More information

Manual "SIRIUS - SIRIUS 3RV2 Motor Starter Protectors", see
https://support.industry.siemens.com/cs/ww/en/view/60279172

General data					
Type					3RV29.7
Size					S00, SO
Standards					
- IEC 60947-2					\checkmark
- IEC 60947-4-1					\checkmark
- UL 508/UL 60947-4-1					\checkmark
Rated current $I_{\text {n }}$				A	63
Permissible rated current at inside temperature of control cabine					
Motor starter protectors	Size	Rated current	Inside temperature of control cabinet		
-3RV2.11	S00	... 14 A	$60^{\circ} \mathrm{C}$	\%	100
		> $14 \ldots 16 \mathrm{~A}$	$\begin{aligned} & 40^{\circ} \mathrm{C} \\ & 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 100 \\ & 87 \end{aligned}$
-3RV2. 21	So	... 16 A	$60^{\circ} \mathrm{C}$	\%	100
		> $16 \ldots 25 \mathrm{~A}$	$\begin{aligned} & 40^{\circ} \mathrm{C} \\ & 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 100 \\ & 87 \end{aligned}$
		> $25 \ldots 32 \mathrm{~A}$	$40^{\circ} \mathrm{C}$	\%	87
Permissible ambient temperature					
- Storage/transport				${ }^{\circ} \mathrm{C}$	$-50 \ldots+80$
- Operation				${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$					
- Acc. to IEC		10 \% overvolt		\checkmark AC	500
		5% overvolta		VAC	525
- Acc. to UL/CSA				$V A C$	600
Rated frequency				Hz	50/60
Rated impulse withstand voltage $U_{\text {imp }}$				kV	6
Short-circuit strength					Correspond
Degree of protection acc. to IEC 60529					IP20 (In the term IPOO cond
Touch protection acc. to IEC 60529					Finger-safe

\checkmark Yes

Conductor cross-sections				
Type		Three-phase busbar with infeed 3RV2917-1A, 3RV2917-1E	Terminal block 3RV2917-5D	Terminal block for device infeed 3RV2917-5FA00
Conductor cross-sections (min./max.)				
- Solid or stranded	mm^{2}	$4 . . .25$	$1.5 \ldots 6$	1... 10
- Finely stranded with end sleeve	mm^{2}	4 ... 25	$1.5 \ldots 4$	$1 . . .6$
- Finely stranded without end sleeve	mm^{2}	6 ... 25	$1.5 \ldots 6$	--
- AWG cables	AWG	$10 . . .3$	$15 . .10$	$18 . .8$

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

3RV29 infeed system

Selection and ordering data

${ }^{1)} I>14 \mathrm{~A}$, please note derating.
${ }^{2)} I>16 \mathrm{~A}$, please note derating.

	Type	Version	For contactors	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
			Size	d					
Contactor bases									
Prp	Contactor bases for mounting direct-on-line or reversing starters	Single-unit packaging	$\begin{aligned} & \text { S00 } \\ & \text { S00, so } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	3RV2917-7AA00 3RV2927-7AA00		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 41 E \\ & 41 E \end{aligned}$

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV2 Motor Starter Protectors/Circuit Breakers

3RV29 infeed system

1) The expansion plug is included in the scope of supply of the 3RV2917-4. three-phase busbars for system expansion.
2) The end cover is included in the scope of supply of the 3RV2917-1. three-phase busbars with infeed system.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV1 Motor Starter Protectors/Circuit Breakers

For fuse monitoring

Technical specifications
See pages 7/10, 7/12, 7/14, 7/18, 7/19 and 7/22

Selection and ordering data

Without auxiliary switches

Note:
The auxiliary switch required for signaling must be ordered separately.

Accessories

Technical specifications
See page 7/23
Selection and ordering data
Voltage transformer circuit breakers with transverse auxiliary switches (1 CO)

Accessories

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV1 Molded Case Motor Starter Protectors up to 800 A
General data

Overview

More information

Home page, see www.siemens.com/sirius-circuit-breaker

SIRIUS 3RV1063-7AL10 molded case motor starter protector
The 3RV10 and 3RV13 molded case motor starter protectors for up to 800 A are compact, current-limiting motor starter protectors which can be used above all in motor feeders for special voltages of $440 \mathrm{~V}, 480 \mathrm{~V}, 550 \mathrm{~V}$ and 690 V . They are used for switching and protecting three-phase motors and other loads with rated currents up to 800 A .

Note:

For motor feeders above 100 A and at 400 V and 500 V , the 3VL molded case motor starter protectors must be used, see Catalog LV 10.

Type of construction

The molded case motor starter protectors are available in 4 widths:

- 3RV1353 - width 90 mm , max. rated current 32 A at 550 V AC suitable for three-phase motors up to 22 kW
- 3RV1.6. - width 105 mm , max. rated current 250 A at 690 V AC suitable for three-phase motors up to 160 kW
- 3RV1.7. - width 140 mm , max. rated current 630 A at 690 V AC suitable for three-phase motors up to 315 kW
- 3RV1.83 - width 210 mm ,
max. rated current 800 A
at 690 V AC suitable for three-phase motors up to 500 kW
The 3RV1 molded case motor starter protectors for up to 800 A can be mounted in horizontal, vertical or lying arrangement directly on a mounting plate or mounting rail. Their rated data are adversely affected as the result.
The phase barriers for better insulation between the phases are included in the scope of supply, and it is essential to use them.
The motor starter protectors can be supplied through top and bottom terminals without impairing their function, enabling them to be installed in any type of switchgear without any further steps.

Connection methods

The 3RV1 molded case motor starter protectors up to 800 A are suitable solely for screw connection

Screw terminals

The terminals are indicated in the corresponding tables by the symbols shown on orange backgrounds.

Article No. scheme

Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers

For your orders please use the article numbers quoted in the selection and ordering data.

Benefits

- High short-circuit breaking capacity in the feeder
- Optimum usability in motor feeders for the special voltages $440 \mathrm{~V}, 480 \mathrm{~V}, 550 \mathrm{~V}$ and 690 V
- Compact design
- The releases are available both in purely magnetic (up to 32 A) and in solid-state versions (100 A to 800 A).
- Available for motor or starter protection (short-circuit protection alone)

Application

Operating conditions

The 3RV1 molded case motor starter protectors for up to 800 A can be operated at ambient temperatures between $-25^{\circ} \mathrm{C}$ and $+70{ }^{\circ} \mathrm{C}$. They can be used according to IEC 60721-2-1 in the most difficult environmental conditions with a hot and damp climate.
Since operational currents, starting currents and current peaks are different even for motors with identical power ratings due to the inrush current, the motor ratings in the selection tables are only guide values. The specific rated and start up data of the motor to be protected is always paramount to the choice of the most suitable molded case motor starter protectors.
The 3RV1 molded case motor starter protectors up to 800 A have not been tested for use with frequency converters. The possibility of premature tripping in such applications cannot therefore be ruled out.

Possible uses

The 3RV1 molded case motor starter protectors for up to 800 A are suitable as switching and protection devices for motors. The following versions are available:

- For motor protection;
the overload and short-circuit releases are designed for optimized protection and direct-on-line starting of three-phase AC squirrel-cage motors. The motor starter protectors have an electronic release which not only provides short-circuit and overload protection but is also sensitive to phase failure and phase asymmetry and offers protection in the event of rotor blockage.
- For starter combinations;
these molded case motor starter protectors are used for shortcircuit protection in combinations of circuit breaker, motor contactor and overload relay. They are equipped with a purely magnetic release (up to 32 A) or a solid-state release (100 A to 800 A).

Standards and specifications

The overcurrent releases for motor protection comply with IEC 60947-4-1. Isolating features are also compliant with IEC 60947-2.
The 3RV1 molded case motor starter protectors comply in addition with IEC 60068-2-6 (shock and vibration strength) and are certified for the specifications of the major marine classification societies:

- RINA
- Det Norske Veritas
- Bureau Veritas
- Lloyds Register of Shipping
- Germanischer Lloyd
- American Bureau of Shipping

Use of SIRIUS protection devices in conjunction with IE3/IE4 motors
Note:
For the use of 3RV1 motor starter protectors/circuit breakers in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.
For more information, see Preface on page 7.

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV1 Molded Case Motor Starter Protectors up to 800 A
General data
Technical specifications

More information
Configuration Manual "SIRIUS Configuration - Selection Data for Fuseless Load Reference Manual "Protection Equipment - Circuit Breakers •
Feeders", see https://support. industry.siemens.com/cs/ww/en/view/40625241
Molded Case Circuit Breakers", see
https://support.industry. siemens.com/cs/ww/en/view/35681461

General data										
Type Dimensions - W $\cdot{ }^{-}$ - D	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \\ & \mathrm{~mm} \end{aligned}$	3RV1063 105 205 139	3RV1073 $\begin{aligned} & 140 \\ & 205 \\ & 139 \end{aligned}$	3RV1083 $\begin{aligned} & 210 \\ & 268 \\ & 159 \end{aligned}$	$\begin{aligned} & \text { 3RV1353 } \\ & \\ & 90 \\ & 130 \\ & 102 \\ & \hline \end{aligned}$	3RV1363 $\begin{aligned} & 105 \\ & 205 \\ & 139 \end{aligned}$	3RV1364 $\begin{aligned} & 105 \\ & 205 \\ & 139 \end{aligned}$	3RV1373 $\begin{aligned} & 140 \\ & 205 \\ & 139 \end{aligned}$	3RV1374 $\begin{aligned} & 140 \\ & 205 \\ & 139 \\ & \hline \end{aligned}$	3RV1383 $\begin{aligned} & 210 \\ & 268 \\ & 159 \end{aligned}$
Standard		IEC 60947-2, EN 60947-2								
Motor protection		\checkmark			--					
Starter combinations		--			\checkmark					
Rated current $I_{\text {n }}$	A	160	400	630	160	250		400, 630		630, 800
Number of poles		3								
Rated operational voltage $\mathbf{U}_{\mathbf{e}} \mathbf{5 0} \ldots \mathbf{6 0 ~ H z ~ A C}$	V	690								
Rated impulse withstand voltage $U_{\text {imp }}$	V	8								
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	1000			$800 \quad 1000$					
Test voltage at industrial frequency for 1 min	V	3500			3000	3500				
Rated ultimate short-circuit breaking capacity $I_{\text {cu }}$										
- At 220/230 V AC, 50 ... 60 Hz	kA	200			120	200				
- At 380/415 V AC, 50 ... 60 Hz	kA	120		100	85	120	200	120	200	100
- At 440 V AC, 50 ... 60 Hz	kA	100		80	75	100	180	100	180	80
- At 500 V AC, $50 \ldots 60 \mathrm{~Hz}$	kA	85		65	50	85	150	85	150	65
- At 550 V AC, 50 ... 60 Hz	kA	--			35	--				
- At 690 V AC, $50 \ldots 60 \mathrm{~Hz}$	kA	70		30	10	70	80	70	80	30

Rated service short-c
capacity $I_{\text {cs }}\left(\%\right.$ of $\left.I_{\text {cu }}\right)$

- At 220/230 V AC, $50 \ldots 60 \mathrm{~Hz}$	\%	100		75	100					75
- At 380/415 V AC, $50 \ldots 60 \mathrm{~Hz}$	\%	100		75		100				75
- At 440 V AC, 50 ... 60 Hz	\%	100		75		100				75
- At 500 V AC, $50 \ldots 60 \mathrm{~Hz}$	\%	100		75		100		$100^{1)} / 75^{2)}$	100	75
- At 690 V AC, 50 ... 60 Hz	\%	100		75		100		$100^{1} / 50^{2}$	100	75
Rated short-circuit making capacity (415 V)	kA	264		220	187	264	440	264	440	220
Break time (415 V at $I_{\text {cu }}$)	ms	5	6	7	3	5		6		7
Category (IEC 60947-2)		A	$\begin{aligned} & \mathrm{B}(400 \mathrm{~A}), \\ & \mathrm{A}(630 \mathrm{~A}) \end{aligned}$	B	A			$\begin{aligned} & \mathrm{B}(400 \mathrm{~A}), \\ & \mathrm{A}(630 \mathrm{~A}) \\ & \hline \end{aligned}$		B

Isolating features	\checkmark
Trip class CLASS	$10 \mathrm{~A}, 10,20,30$

- Magnetic type
- Electronic (motor protection)
- Electronic (starter combinations)

Permissible ambient temperature

- Operation

${ }^{\circ} \mathrm{C}$	$-25 \ldots+70^{4)}$
${ }^{\circ} \mathrm{C}$	$-40 \ldots+70$

- Storage

Mechanical endurance

- Operating cycles
- Operating cycles per hour 2

Electrical endurance

- Operating cycles
- Operating cycles per hour (415 V AC)
\checkmark Has this function
-- Does not have this function

| -- |
| :--- | :--- |
| $-\quad-3$ |

-.-3)
\checkmark \qquad
\checkmark

20000			2500020000			
240	120				120	
8000	7000	5000	8000		7000	5000
120	60		120		60	

1) Value applies for 3RV1373-7GN10 molded case motor starter protectors.
2) Value applies for 3RV1373-7JN10 molded case motor starter protectors.
${ }^{3)}$ For overload protection of the motors, appropriate overload relays must be used.
3) From $50^{\circ} \mathrm{C}$, derating applies in some cases.

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV1 Molded Case Motor Starter Protectors up to 800 A

General data

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Main circuit terminals} \\
\hline Type \& \& 3RV1353 \& 3RV1.6. \& 3RV1.7. \& \[
\begin{aligned}
\& \text { 3RV1083-7JL10, } \\
\& \text { 3RV1383-7JN10 }
\end{aligned}
\] \& 3RV1383-7KN10 \\
\hline Terminal dimensions \& \& \& \& \& \& \\
\hline \multicolumn{7}{|l|}{Front-accessible standard terminals} \\
\hline \begin{tabular}{l}
Busbars/cable lug \\
Number \\
Dimensions \\
- W \\
- D \\
- H \\
- Lock hasp diameter
\end{tabular} \& \begin{tabular}{l}
Unit(s) \\
mm \\
mm \\
mm \\
mm
\end{tabular} \& \[
\begin{aligned}
\& 11 \\
\& \\
\& 20 \\
\& 5 \\
\& 7.5 \\
\& 6.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 25 \\
\& 8 \\
\& 9.5 \\
\& 8.5 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 35 \\
\& 10 \\
\& 11 \\
\& 10.5 \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 2 \\
\& \\
\& 40 \\
\& 5 \\
\& 12 \\
\& 7
\end{aligned}
\] \& 50 \\
\hline \multicolumn{7}{|l|}{Front-extended terminals} \\
\hline \begin{tabular}{l}
Busbars \\
Number \\
Dimensions \\
- W \\
- D \\
- Lock hasp diameter
\end{tabular} \& \begin{tabular}{l}
Unit(s) \\
mm \\
mm \\
mm
\end{tabular} \& 1

20
4

8.5 \& $$
\begin{aligned}
& 10 \\
& 10
\end{aligned}
$$ \& 2

30
7

11 \& $$
\begin{aligned}
& 40 \\
& 5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 50 \\
& 5 \\
& 14
\end{aligned}
$$
\]

\hline | Cable lug |
| :--- |
| Number |
| Dimensions |
| - W |
| - Lock hasp diameter | \& \[

$$
\begin{aligned}
& \text { Unit(s) } \\
& \mathrm{mm} \\
& \mathrm{~mm}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 20 \\
& 20 \\
& 8.5
\end{aligned}
$$

\] \& 10 \& \[

$$
\begin{aligned}
& 2 \\
& \\
& 30 \\
& 11 \\
& \hline
\end{aligned}
$$

\] \& 40 \& \[

$$
\begin{aligned}
& 50 \\
& 14 \\
& \hline
\end{aligned}
$$
\]

\hline \multicolumn{7}{|l|}{Front-extended cable terminals for copper cable}

\hline | Busbars, flexible |
| :--- |
| Number |
| Dimensions W $\times \mathrm{D} \times \mathrm{N}$ |
| - W |
| - D |
| - N (= number of laminations) | \& | Unit(s) |
| :--- |
| mm |
| mm |
| mm | \& \[

$$
\begin{aligned}
& 1 \\
& \\
& 13 \\
& 0.5 \\
& 10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.5 \\
& 0.8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 24 \\
& 1
\end{aligned}
$$
\] \& -- \&

\hline | Cable lug, flexible |
| :--- |
| Number |
| Dimensions |
| - For 1 unit |
| - For 2 units | \& Unit(s)

$$
\begin{aligned}
& \mathrm{mm}^{2} \\
& \mathrm{~mm}^{2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \text { or } 2 \\
& \\
& 1 \ldots 70 \\
& 1 \ldots 50 \\
& 1 \ldots 5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.5 \ldots 120 \\
& 2.5 \ldots 95
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 16 \ldots 240 \\
& 16 \ldots 150
\end{aligned}
$$
\] \& -- \&

\hline | Cable lug, rigid |
| :--- |
| Number |
| Dimensions |
| - For 1 unit |
| - For 2 units (for outside mounting) | \& Unit(s)

$$
\begin{aligned}
& \mathrm{mm}^{2} \\
& \mathrm{~mm}^{2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \\
& 1 . . .95
\end{aligned}
$$

\] \& 2.5 ... 185 \& \[

$$
\begin{aligned}
& 1 \text { or } 2 \\
& \\
& 16 \ldots 300 \\
& 120 \ldots 240
\end{aligned}
$$
\] \& --

--
-- \&

\hline Rear terminals \& \& \& \& \& \&

\hline | Busbars |
| :--- |
| Number |
| Dimensions |
| - W |
| - D |
| - Lock hasp diameter | \& | Unit(s) |
| :--- |
| mm |
| mm |
| mm | \& \[

$$
\begin{aligned}
& 1 \\
& \\
& 20 \\
& 4 \\
& 8.5
\end{aligned}
$$

\] \& 10 \& \[

$$
\begin{aligned}
& 2 \\
& \\
& 30 \\
& 7 \\
& 11
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 40 \\
& 5 \\
& 14
\end{aligned}
$$
\] \& 50

\hline
\end{tabular}

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV1 Molded Case Motor Starter Protectors up to 800 A
General data

Auxiliary switches		
Type		3RV1991-1.A0
Rated operational current $I_{\mathbf{e}}$		
- At 250 V AC/DC		
- At AC-14 (utilization category according to IEC 60947-5-1)	A	6
Supply voltage 125 V	A	5
Supply voltage 250 V		
- At DC-13 (utilization category according to IEC 60947-5-1)	A	0.3
Supply voltage 125 V		0.15
Supply voltage 250 V	$\mathrm{~mA} \quad \geq 0.75$	
- At 24 V DC	$\mathrm{mA} \quad \geq 1$	
- Supply voltage 24 V		
- Supply voltage 5 V		

Auxiliary releases					
Molded case motor starter protectors Version		Power consumption during pick-up			
		3RV1353		3RV1.6., 3RV1.7., 3RV1.83	
		AC	DC	AC	DC
Undervoltage releases		3RV195		3RV198	
- 24 ... 30 V AC/DC - 110 ... 127 V AC/110 ... 125 V DC - 220 ... 240 V AC/220 ... 250 V DC		$\begin{aligned} & 1.5 \mathrm{VA} \\ & 2 \mathrm{VA} \\ & 2.5 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~W} \\ & 2 \mathrm{CO} \\ & 2.5 \mathrm{~W} \end{aligned}$	6 VA 6 VA 6 VA	$\begin{aligned} & 3 \mathrm{~W} \\ & 3 \mathrm{~W} \\ & 3 \mathrm{~W} \end{aligned}$
Opening times	ms	15	15		
Shunt releases		3RV195		3RV198	
- 24 ... 30 V AC/DC - 110 ... 127 V AC/110 ... 125 V DC - 220 ... 240 V AC/220 ... 250 V DC		$\begin{aligned} & 50 \mathrm{VA} \\ & 50 \mathrm{VA} \\ & 50 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~W} \\ & 50 \mathrm{~W} \\ & 50 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 150 \text { VA } \\ & 150 \text { VA } \\ & 150 \text { VA } \end{aligned}$	$\begin{aligned} & 150 \mathrm{~W} \\ & 150 \mathrm{~W} \\ & 150 \mathrm{~W} \end{aligned}$
Opening times	ms	15	15	15	15

Motor Starter Protectors/Circuit Breakers

Selection and ordering data
CLASS 10A, 10, 20, 30; without auxiliary switch

TU = trip unit (release)
Further accessories can be ordered separately (see "Accessories" page 7/69 onwards).

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV1 Molded Case Motor Starter Protectors up to 800 A
For starter combinations IE3/IE4 ready
Selection and ordering data

Without auxiliary switches

With magnetic releases

$+2$	Standard switching capacity, non-adjustable short-circuit release, TU 1						1	1 unit	41E
	1	Without	13	85	20	3RV1353-6AP10			
	1.6	Without	21	85	20	3RV1353-6BP10	1	1 unit	41 E
	2	Without	26	85	20	3RV1353-6CP10	1	1 unit	41E
	3.2	Without	42	85	20	3RV1353-6DP10	1	1 unit	41E
3RV1353-6.P10	4	Without	52	85	20	3RV1353-6EP10	1	1 unit	41 E
	5	Without	65	85	20	3RV1353-6FP10	1	1 unit	41 E
	6.5	Without	85	85	20	3RV1353-6GP10	1	1 unit	41 E
	8.5	Without	111	85	20	3RV1353-6HP10	1	1 unit	41E
	12.5	Without	163	85	20	3RV1353-6JP10	1	1 unit	41E

Standard switching capacity, adjustable short-circuit release, TU 2

20	Without	$120 \ldots 240$	85	20	3RV1353-6LM10	1	1 unit	41 E
32	Without	$192 \ldots 384$	85	20	3RV1353-6MM10	1	1 unit	41E

With electronic releases

Standard switching capacity, adjustable short-circuit release, TU 3

c.onemem	Standard switching capacity, adjustable short-circuit release, TU 3						1	1 unit	41E
	100	Without	100 ... 1000	120	20	3RV1363-7AN10			
	160	Without	160 ... 1600	120	20	3RV1363-7CN10	1	1 unit	41E
	250	Without	250 ... 2500	120	20	3RV1363-7EN10	1	1 unit	41E
	400	Without	400 ... 4000	120	20	3RV1373-7GN10	1	1 unit	41 E
	630	Without	$630 \ldots 6300$	120	20	3RV1373-7JN10	1	1 unit	41E
	630	Without	630 ... 6300	100	20	3RV1383-7JN10	1	1 unit	41E
-	800	Without	$800 . . .8000$	100	20	3RV1383-7KN10	1	1 unit	41E

3RV13..-7.N10
Increased switching capacity, adjustable short-circuit release, TU 3

100	Without	$100 \ldots 1000$	200	20	3RV1364-7AN10	1	1 unit
160	Without	$160 \ldots 1600$	200	20	3RV1364-7CN10	1 unit	$41 E$
250	Without	$250 \ldots 2500$	200	20	3RV1364-7EN10	1	1
400	Without	$400 \ldots 4000$	200	20	3RV1374-7GN10	$41 E$	

$T U=$ trip unit (release)
Further accessories can be ordered separately
(see "Accessories" page 7/69 onwards).

Motor Starter Protectors/Circuit Breakers SIRIUS 3RV1 Molded Case Motor Starter Protectors/Circuit Breakers Accessories

Selection and ordering data

Motor Starter Protectors/Circuit Breakers
SIRIUS 3RV1 Molded Case Motor Starter Protectors/Circuit Breakers
Accessories
Rotary operating mechanisms, mounting accessories
Selection and ordering data

Overview

More information

Home page, see http://www.siemens.com/sirius-overloadrelays
Industry Mall, see

- www.siemens.com/product?3RU2
- www. siemens.com/product?3RB3
- www.siemens.com/product?3RB2

Configuration Manuals, see

- "SIRIUS Configuration - Selection Data for Fuseless Load Feeders",
https://support.industry.siemens.com/cs/ww/en/view/40625241
- "Configuring SIRIUS Innovations - Selection Data for Fuseless and Fused Load Feeders",
https://support.industry.siemens.com/cs/ww/en/view/39714188

Features	3RU21	3RB30/3RB31	3RB20/3RB21	000909 ceces \square	3RB24	
General data						
Sizes	S00 ... S3	S00 ... S3	S6 ... S12	S00 ... S12	S00 ... S12	- Are coordinated with the dimensions, connections and technical characteristics of the other devices in the SIRIUS modular system (contactors, etc., ...) - Permit the mounting of slim and compact load feeders in widths of 45 mm (SOO, SO), 55 mm (S2), 70 mm (S3), 120 mm (S6) and 145 mm (S10/S12); this does not include the current measuring modules for the 3RB22 to 3RB24 evaluation modules sizes S00 to S3 - Simplify configuration
Seamless current range	$0.11 \ldots 100 \mathrm{~A}$	$0.1 \ldots 115$ A	50... 630 A	$\begin{gathered} 0.3 \ldots 630 \mathrm{~A} \\ (\text { up to } 820 \mathrm{~A})^{1)} \end{gathered}$	$\begin{gathered} 0.3 \ldots 630 \mathrm{~A} \\ (\text { up to } 820 \mathrm{~A})^{1)} \end{gathered}$	- Allows easy and consistent configuration with one series of overload relays (for small to large loads)
Protection functions						
Tripping due to overload	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides optimum inverse-time delayed protection of loads against excessive temperature rises due to overload
Tripping due to phase asymmetry	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides optimum inverse-time delayed protection of loads against excessive temperature rises due to phase asymmetry
Tripping due to phase failure	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Minimizes heating of three-phase motors during phase failure
Protection of single-phase loads	\checkmark	--	--	\checkmark	\checkmark	- Enables the protection of single-phase loads
Tripping due to overtemperature by integrated thermistor motor protection function	-_2)	-_2)	-_2)	\checkmark	\checkmark	- Provides optimum temperature-dependent protection of loads against excessive temperature rises, e.g. for stator-critical motors or in the event of insufficient coolant flow, contamination of the motor surface or long starting or braking operations - Eliminates the need for additional special equipment - Saves space in the control cabinet - Reduces wiring outlay and costs
Tripping due to ground fault by	--	$\begin{gathered} \boldsymbol{\checkmark} \\ \text { (only 3RB31) } \end{gathered}$	$\begin{gathered} \checkmark \\ \text { (only 3RB21) } \end{gathered}$	\checkmark	\checkmark	- Provides optimum protection of loads against high-resistance short circuits or ground faults due to moisture, condensed water, damage to the insulation material, etc.
internal ground-fault detection (can be activated)						- Eliminates the need for additional special equipment - Saves space in the control cabinet - Reduces wiring outlay and costs
\checkmark Available -- Not available				1) Motor curr measuring 3UF1868-3 For 3UF18 2) The SIRIU provide ad	ents up to 820 A module, e.g. 3R 3GA00 (820 A/1 transformers see S 3RN thermistor dditional tempera	can be recorded and evaluated by a current 2906-2BG1 (0.3 to 3 A), in combination with a) series transformer. page 10/22. motor protection devices can be used to ure-dependent protection.

Overload Relays

General data

Features	3RU21	3RB30/3RB31	3RB20/3RB21		3RB24	Benefits
Features						
RESET function	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Allows manual or automatic resetting of the device
Remote RESET function	(by means of separate module)	(only with 3RB31 and external auxiliary voltage 24 V DC)	(only with 3RB21 and external auxiliary voltage 24 V DC)	(electrically via external button)	(electrically with button or via IO-Link)	- Allows the remote resetting of the device
TEST function for auxiliary contacts	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Allows easy checking of the function and wiring
TEST function for electronics	--	\checkmark	\checkmark	\checkmark	\checkmark	- Allows checking of the electronics
Status display	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Displays the current operating state
Large current adjustment button	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Makes it easier to set the relay exactly to the correct current value
Integrated auxiliary contacts $\text { (1 NO + } 1 \text { NC) }$	\checkmark	\checkmark	\checkmark	$\begin{gathered} \boldsymbol{\checkmark} \\ (2 \times) \end{gathered}$	--	- Allows the load to be switched off if necessary - Can be used to output signals
Integrated auxiliary contacts (1 CO and 1 NO in series)	--	--	--	--	\checkmark	- Enables the controlling of contactors directly from the higher-level control system through IO-Link
IO-Link connection	--	--	--	--	\checkmark	- Reduction of wiring in the control cabinet - Enables communication
Connection of optional hand-held device	--	--	--	--	\checkmark	- Enables local operation
Communication capability through IO-Link						
Full starter functionality through IO-Link	--	--	--	--	\checkmark	- Enables in combination with the SIRIUS 3RT contactors the assembly of communicationcapable motor starters (direct-on-line, reversing and star-delta (wye-delta) starting)
Readout of diagnostics functions	--	--	--	--	\checkmark	- Enables the reading out of diagnostics information such as overload, open circuit, ground fault, etc.
Readout of current values	--	--	--	--	\checkmark	- Enables the reading out of current values and their direct processing in the higher-level control system
Readout of all set parameters	--	--	--	--	\checkmark	- Enables the reading out of all set parameters, e.g. for plant documentation
\checkmark Available -- Not available						

Features	3RU21	3RB30/3RB31	3RB20/3RB21	000009 cecce \square EEFEE 3RB22/3RB23	3RB24	Benefits
Design of load feeders						
Short-circuit strength up to 100 kA at 690 V (in conjunction with the corresponding fuses or the corresponding motor starter protector)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides optimum protection of the loads and operating personnel in the event of short circuits due to insulation faults or faulty switching operations
Electrical and mechanical matching to 3RT contactors	\checkmark	\checkmark	\checkmark	${ }^{1)}$	${ }^{1)}$	- Simplifies configuration - Reduces wiring outlay and costs - Enables stand-alone installation as well as space-saving direct mounting
Straight-through transformers for main circuit ${ }^{2}$) (in this case the cables are routed through the feedthrough openings of the overload relay and connected directly to the box terminals of the contactor)	--	$\left(\mathrm{S} 2^{\checkmark}, \mathrm{S} 3\right)$	$\stackrel{\checkmark}{(S 6)}$	$\stackrel{\checkmark}{(S 00} \ldots \mathrm{S} 6)$	$\left(S 00^{\checkmark} \ldots \mathrm{S} 6\right)$	- Reduces the contact resistance (only one point of contact) - Saves wiring costs (easy, no need for tools, and fast) - Saves material costs - Reduces installation costs
Spring-type connection system for main circuit ${ }^{2}$)	$\stackrel{\checkmark}{(S O O, S O)}$	$\stackrel{\checkmark}{(S O O, S O)}$	--	--	--	- Enables fast connections - Permits vibration-resistant connections - Enables maintenance-free connections
Spring-type connection system for auxiliary circuits ${ }^{2}$)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Enables fast connections - Permits vibration-resistant connections - Enables maintenance-free connections
Full starter functionality through IO-Link	--	--	--	--	\checkmark	- Enables in combination with the SIRIUS 3RT contactors the assembly of communicationcapable motor starters (direct-on-line, reversing and star-delta (wye-delta) starting)
Starter function	--	--	--	--	\checkmark	- Integration of feeders via IO-Link in the control system up to 630 A or 820 A
\checkmark Available -- Not available				1) Exceptio 2) Alternat	up to size S3, ely available for	stand-alone installation is possible. ew terminals.

Overload Relays

General data

Features	3RU21	3RB30/3RB31	3RB20/3RB21	000000 ceoce \qquad P \qquad efecer 3RB22/3RB23	3RB24	Benefits
Other features						
Temperature compensation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Allows the use of the relays at high temperatures without derating - Prevents premature tripping - Allows compact installation of the control cabinet without distance between the devices/load feeders - Simplifies configuration - Enables space to be saved in the control cabinet
Very high long-term stability	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- Provides safe protection for the loads even after years of use in severe operating conditions
Wide setting ranges	--	$\stackrel{\checkmark}{(1: 4)}$	$\stackrel{\checkmark}{(1: 4)}$	$\stackrel{\sqrt{\prime}}{(1: 10)}$	$\stackrel{\sqrt{2}}{(1: 10)}$	- Minimize the configuration outlay and costs - Minimize storage overheads, storage costs, tied-up capital
Fixed trip class	$\begin{aligned} & \text { CLASS 10, } \\ & \text { CLASS 10A } \end{aligned}$	3RB30: CLASS 10E or CLASS 20E	3RB20: CLASS 10E or CLASS 20E	--	--	- Optimum motor protection for standard starts
Trip classes adjustable on the device CLASS 5E, 10E, 20E, 30E	--	3RB31: \downarrow	3RB21: \downarrow	\checkmark	\checkmark	- Enables solutions for very fast starting motors requiring special protection (e.g. Ex motors) - Enables heavy starting solutions - Reduces the number of variants - Minimizes the configuring outlay and costs - Minimizes storage overhead, storage costs, and tied-up capital
Low power loss	--	\checkmark	\checkmark	\checkmark	\checkmark	- Reduces power consumption and energy costs (up to 98% less power is used than for thermal overload relays) - Minimizes temperature rises of the contactor and control cabinet - in some cases this may eliminate the need for control cabinet cooling. - Direct mounting to contactor saves space, even for high motor currents (i.e. no heat decoupling is required)
Internal power supply	--1)	\checkmark	\checkmark	--	--	- Eliminates the need for configuration and connecting an additional control circuit
Supplied from an external source via	--	--	--	--	\checkmark	- Eliminates the need for configuration and connecting an additional control circuit

\checkmark Available
-- Not available
${ }^{1)}$ SIRIUS 3RU11 and 3RU21 thermal overload relays use a bimetal contactor and therefore do not require a control supply voltage

Overload Relays

Features	3RU21	3RB30/3RB31	3RB20/3RB21		3RB24	Benefits
Other features (continued)						
Overload warning	--	--	--	\checkmark	\checkmark	- Indicates imminent tripping of the relay directly on the device due to overload, phase asymmetry or phase failure through flickering of the LEDs or in the case of the 3RB24 as a signal through IO-Link - Allows the imminent tripping of the relay to be signaled - Allows measures to be taken in time in the event of inverse-time delayed overloading of the load for an extended period over the current limit - Eliminates the need for an additional device - Saves space in the control cabinet - Reduces wiring outlay and costs
Analog output	--	--	--	\checkmark	\checkmark	- Allows the output of an analog output signal for actuating moving-coil instruments, feeding programmable logic controllers or transfer to bus systems - Eliminates the need for an additional measuring transducer and signal converter - Saves space in the control cabinet - Reduces wiring outlay and costs

[^6]
Overload Relays

General data

Overview of overload relays - matching contactors

	Overload relays	Current measurement	Current range	Contactors (type, size, rating in kW)								
				3RT201.	3RT202.	3RT203.	3RT204.	3RT105.	3RT106.	3RT107.	3TF68/3TF69	
	Type		A	SOO	So	S2	S3	S6	S10	S12	14	
			3/4/5.5/7.5	5.5/7.5/11/15/18.5	$\begin{aligned} & 15 / 18.5 / 22 / \\ & 30 / 37 \end{aligned}$	37/45/55	55/75/90	110/132/160	200/250	375/450		
SIRIUS 3RU21 thermal overload relays												
	3RU211	Integrated		$0.11 \ldots 16$	\checkmark	--	--	--	--	--	--	--
	3RU212	Integrated	$1.8 \ldots 40$	--	\checkmark	--	--	--	--	--	--	
	3RU213	Integrated	$11 . . .80$	--	--	\checkmark	--	--	--	--	--	
sosess	3RU214	Integrated	28 ... 100	--	--	--	\checkmark	--	--	--	--	
3RU21												
SIRIUS 3RB30 electronic overload relays ${ }^{11}$												
1	3RB301	Integrated	$0.1 . . .16$	\checkmark	--	--	--	--	--	--	--	
111	3RB302	Integrated	$0.1 \ldots 40$	--	\checkmark	--	--	--	--	--	--	
	3RB303	Integrated	12.5 .. 80	--	--	\checkmark	--	--	--	--	--	
	3RB304	Integrated	$32 . .115$	--	--	--	\checkmark	--	--	--	--	

3RB30
SIRIUS 3RB31 electronic overload relays ${ }^{17}$

| $3 R B 311$ | Integrated 0.1 $\ldots 16$ |
| :--- | :--- | :--- |
| 3RB312 | Integrated $0.1 \ldots 40$ |
| $3 R B 313$ | Integrated $12.5 \ldots 80$ |
| 3 3RB314 | Integrated $32 \ldots 115$ |

3 3RB31
SIRIUS 3RB20
3 3RB20
SIRIUS 3RB21 electronic overload relays ${ }^{1)}$

3RB211 + Integrated 630 ... 820
3UF18
3 RB21
SIRIUS 3RB22 to 3RB24 electronic overload relays ${ }^{1}$

\checkmark Can be used
-- Cannot be used

$\begin{aligned} & \text { 3RB2283/ } \\ & \text { 3RB2383/ } \\ & \text { 3RB2483+ } \end{aligned}$	3RB2906	0.3 ... 25	\checkmark	\checkmark	--	--	--	--	--	--
	3RB2906	10... 100	\checkmark	\checkmark	\checkmark	\checkmark	--	--	--	--
	$3 \mathrm{RB2956}$	$20 \ldots 200$	--	\checkmark	\checkmark	\checkmark	\checkmark	--	--	--
	3RB2966	$63 \ldots 630$	--	--	--	--	--	\checkmark	\checkmark	\checkmark
	$\begin{aligned} & \text { 3RB2906 } \\ & +3 \mathrm{UF} 18 \end{aligned}$	$630 \ldots 820$	--	--	--	--	--	--	--	\checkmark

[^7]
Connection methods

3RU2 thermal overload relays

- Sizes SOO and SO:
- Main and auxiliary circuit: Either screw or spring-type terminals
- Sizes S2 and S3:
- Main circuit: Screw terminals with box terminal
- Auxiliary circuit: Either screw or spring-type terminals

3RB3 electronic overload relays

- Sizes SOO and SO:
- Main and auxiliary circuit: Either screw or spring-type terminals
- Sizes S2 and S3:
- Main circuit: Screw terminals with box terminal or as
straight-through transformer
- Auxiliary circuit: Either screw or spring-type terminals

3RB2 electronic overload relays
3RB20 and 3RB21 overload relays:

- Size S6:
- Main circuit: With busbar connection or as straight-through transformer
- Auxiliary circuit: Either screw or spring-type terminals
- Sizes S10/S12:
- Main circuit: With busbar connection
- Auxiliary circuit: Either screw or spring-type terminals

3RB22 to 3RB24 evaluation modules:

- Screw or spring-type terminals

3RB29 current measuring modules:

- Up to size S3: Straight-through transformers
- As from size S6:
- Main circuit: With busbar connection
- Auxiliary circuit: Either screw or spring-type terminals

Overload Relays

SIRIUS 3RU2 Thermal Overload Relays

3RU2 for standard applications

Overview

More information

Home page, see http://www.siemens.com/sirius-overloadrelays Industry Mall, see www.siemens.com/product?3RU2
Conversion tool, e.g. from 3RU11 to 3RU21, see www.siemens.com/sirius/conversion-too

Application Manual "SIRIUS Controls with IE3/IE4 Motors", see https://support.industry.siemens.com/cs/ww/en/view/94770820
Manual "SIRIUS - SIRIUS 3RU Thermal Overload Relays / SIRIUS 3RB Electronic Overload Relays", see
http://support.automation.siemens.com/WW/view/en/60298164
Characteristics and certificates, see
https://support.industry.siemens.com/cs/ww/en/ps/16271

Mountable accessories for 3RU thermal overload relay

(1) Switch position indicator and TEST function of the wiring: Indicates a trip and enables the wiring test.
(2) Motor current setting:

Setting the device to the rated motor current is easy with the large rotary knob.
(3) Connecting terminals: Depending on the device version, the connecting terminals are screw terminals or spring-type terminals for the the main and auxiliary circuits.
(4) STOP button:

If the STOP button is pressed, the NC contact is opened. This switches off the contactor downstream. The NC contact is closed again when the button is released.
(5) Selector switch for manual/automatic RESET and RESET button: With this switch you can choose between manual and automatic RESET. A device set to manual RESET can be reset locally by pressing the RESET button. A remote RESET is possible using the RESET modules (accessories), which are independent of size.
(6) Connection for mounting onto contactors:

Optimally adapted in electrical, mechanical and design terms to the contactors. The overload relay can be connected directly to the contactor using these pins. Stand-alone installation is possible as an alternative (in conjunction with a terminal bracket for stand-alone installation).

A sealable transparent cover can be optionally mounted (accessory). It secures the motor current setting against adjustment.

3RU21 thermal overload relays up to 100 A have been designed to provide current-dependent protection for loads with normal starting against impermissibly high temperature rises due to overload or phase failure.
An overload or phase failure results in an increase of the motor current beyond the set rated motor current. Via heating elements, this current rise heats up the bimetal strips inside the device which then bend and as a result trigger the auxiliary contacts by means of a tripping mechanism. The auxiliary contacts then switch off the load by means of a contactor. The break time depends on the ratio between the tripping current and the current setting I_{e} and is stored in the form of a long-term stable tripping characteristic curve, see Characteristic curves.
The "tripped" status is signaled by means of a switch position indicator. The relay is reset manually or automatically after a recovery time has elapsed.
The 3RU2 thermal overload relays are suitable for operation with frequency converters.
The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials. They comply with all important worldwide standards and approvals.

Use in hazardous areas

The 3RU2 overload relays are certified in accordance with the European explosion protection directive (ATEX) and the international explosion protection standard (IECEx), see Certificates.

SIRIUS 3RU2136-4.B0 thermal overload relay
Article No. scheme

Product versions Thermal overload relays		Article number	
		3RU2	$\square \square \square-\square \square \square \square$
Device type	e. g. $1=$ CLASS $10,1 \mathrm{NO}+1 \mathrm{NC}$		\square
Size, rated operational current and power	e. g. $16=16 \mathrm{~A}(7.5 \mathrm{~kW})$ for size S00		$\square \square$
Setting range for overload release	e. g. $O A=0.11 \ldots 0.16 \mathrm{~A}$		$\square \square$
Connection methods	e.g. $B=$ screw terminals		\square
Installation type	e. g. $0=$ mounting on contactor		\square
Example		3RU2	$116-0$ A 0

Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders please use the article numbers quoted in the selection and ordering data.

Overload Relays

SIRIUS 3RU2 Thermal Overload Relays

3RU2 for standard applications

Benefits

The most important features and benefits of the 3RU21 thermal overload relays are listed in the overview table (see "General
Data", page 7/71 onwards).

Application

Industries

The 3RU21 thermal overload relays are suitable for customers from all industries who want to guarantee optimum inverse-time delayed protection of their electrical loads (e.g. motors) under normal starting conditions (CLASS 10, 10A)

Application

The 3RU21 thermal overload relays have been designed for the protection of three-phase and single-phase AC and DC motors
If single-phase AC or DC loads are to be protected by the 3RU21 thermal overload relays, all three bimetal strips must be heated. For this purpose, all main current paths of the relay must be connected in series.

Ambient conditions

3RU21 thermal overload relays compensate temperature in the temperature range from $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ according to IEC 60947-4-1. At temperatures from $+60^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, the upper set value of the setting range has to be reduced by a specific factor in accordance with the table below.

Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

Note:
For the use of 3RU21 thermal overload relays in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring see Application Manual
For more information, see Preface on page 7

Technical specifications

More information

System Manual "SIRIUS - System Overview", see
https://support.industry.siemens.com/cs/ww/en/view/60311318
Configuration Manual "Configuring SIRIUS Innovations - Selection Data for Fuseless and Fused Load Feeders", see
https://support.industry.siemens.com/cs/ww/en/view/39714188

Manual "SIRIUS - SIRIUS 3RU Thermal Overload Relays SIRIUS 3RB Electronic Overload Relays", see
https://support.industry.siemens.com/cs/ww/en/view/60298164
Technical specifications, see
https://support. industry. siemens.com/cs/ww/en/ps/16270/to

The following technical information is intended to provide an initial overview of the various types of device and functions.

| Type |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Size |
| Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$ |
| (overload relay with stand-alone installation |
| support) |
| - Screw terminals |
| - Spring-type terminals |

Type Size		3RU2116 SOO	3RU2126 SO	3RU2136 S2	3RU2146 S3
Dimensions (W x H x D) (overload relay with stand-alone installation support) - Screw terminals - Spring-type terminals	$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 45 \times 89 \times 80 \\ & 45 \times 102 \times 79 \end{aligned}$	$\begin{aligned} & 45 \times 97 \times 95 \\ & 45 \times 114 \times 95 \end{aligned}$	$\begin{aligned} & 55 \times 105 \times 117 \\ & 55 \times 105 \times 117 \end{aligned}$	$\begin{aligned} & 70 \times 106 \times 124 \\ & 70 \times 106 \times 124 \end{aligned}$
General data (continued)					
Ambient temperature - Storage/transport - Operation - Temperature compensation - Permissible rated current at - Temperature inside control cabinet $60^{\circ} \mathrm{C}$ - Temperature inside control cabinet $70^{\circ} \mathrm{C}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \% \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & -55 \ldots+80 \\ & -40 \ldots+70 \\ & \text { Up to }+60 \\ & 100 \text { (current r } \\ & 87 \\ & \hline \end{aligned}$	on is required	$\left.+60^{\circ} \mathrm{C}\right)$	
Repeat terminals - Coil repeat terminals - Auxiliary contact repeat terminal		Yes Not required Yes Not required			
Degree of protection acc. to IEC 60529		IP20		- IP20 (front side) - Terminal IP00 (use additional terminal covers for higher degree of protection)	
Touch protection acc. to IEC 60529		Finger-safe			
Shock resistance with sine acc. to IEC 60068-2-27	g / ms	15/11 (auxiliary contacts 95/96 and 97/98: $8 \mathrm{~g} / 11 \mathrm{~ms}$)			
Electromagnetic compatibility (EMC) - Interference immunity - Emitted interference		Not relevant Not relevant			
Resistance to extreme climates - air humidity	\%	90			
Installation altitude above sea level	m	Up to 2000			
Mounting position		The diagrams contactors and a setting corr Stand-alone Contactor +	the permissibl d-alone install of 10% must tion: $\begin{array}{r} 45^{\circ} \\ I_{\mathrm{e}} \times 1,1 \\ 90^{\circ} \end{array}$ d relay:	unting positions or mounting posit emented. _01364	unting onto in the hatched area,
Type of mounting		For mounting onto contactor or stand-alone installation with terminal support, screw and snap-on mounting onto standard mounting rail.			

Overload Relays

SIRIUS 3RU2 Thermal Overload Relays

3RU2 for standard applications

Type Size		$\begin{aligned} & \text { 3RU2116 } \\ & \text { SOO } \end{aligned}$	$\begin{aligned} & \text { 3RU2126 } \\ & \text { SO } \end{aligned}$	$\begin{aligned} & \text { 3RU2136 } \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & \text { 3RU2146 } \\ & \text { S3 } \end{aligned}$
Main circuit					
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690			1000
Rated impulse withstand voltage $U_{\text {imp }}$	kV	6			8
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$	V	690			
Type of current					
- Direct current		Yes			
- Alternating current		Yes, frequency	ge up to 400		
Current setting	A A	$\begin{aligned} & 0.11 \ldots 0.16 \\ & \text { up to } \\ & 11 \ldots 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \ldots 2.5 \\ & \text { up to } \\ & 34 \ldots 40 \end{aligned}$	$\begin{aligned} & 11 \ldots 16 \\ & \text { up to } \\ & 70 \ldots 80 \end{aligned}$	$\begin{aligned} & 28 \ldots 40 \\ & \text { up to } \\ & 80 \ldots 100 \\ & \hline \end{aligned}$
Power loss per unit (max.)	W	4.1 ... 6.3	6.2 ... 7.5	8 ... 14	$12 . . .16 .5$

Short-circuit protection

- With fuse without contactor

With fuse and contactor

See "Selection and ordering data", pages 7/84 ... 7/87
"Short-Circuit Protection with Fuses/Motor Starter Protectors for Motor Feeders see Configuration Manual

Protective separation between main and auxiliary current paths
Acc. to IEC 60947-1

- Screw terminals or ring terminal lug connections 440 690: Setting range 690
- Spring-type terminals
V 440
$\leq 25 \mathrm{~A}$
440: Setting range 690
$>25 \mathrm{~A}$
Conductor cross-sections of main circuit

Connection type		(¢) Screw terminals				Screw terminals with box terminal
Terminal screw		M3, Pozidriv size 2	M4, Pozidriv size 2	M6, Pozidriv size 2	4 mm	Allen screw
Operating devices	mm	$\varnothing 5 \ldots 6$	$\varnothing 5 \ldots 6$	$\varnothing 5 \ldots 6$	4 mm	Allen screw
Prescribed tightening torque	Nm	0.8 ... 1.2	$2 . . .2 .5$	3 ... 4.5	4.5 .	

Conductor cross-sections (min./max.),
1 or 2 conductors can be connected

- Solid or stranded
- Finely stranded with end sleeve (DIN 46228-1)
- AWG cables, solid or stranded

mm ${ }^{2}$	$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{1}\right) \\ & 2 \times(0.75 \ldots 2.5)^{i)} \\ & \max .2 \times 4 \end{aligned}$	$\begin{aligned} & \left.2 \times(1 \ldots 2.5)^{1}\right) \\ & \left.2 \times(2.5 \ldots 10)^{1}\right) \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 35)^{11} \\ & \left.1 \times(2.5 \ldots 5)^{1}\right)^{\prime} \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 16)^{1)} \\ & 2 \times(10 \ldots 50)^{11} \\ & 1 \times(10 \ldots 70)^{1)^{\prime}} \end{aligned}$
mm ${ }^{2}$	$\begin{aligned} & \left.2 \times(0.5 \ldots 1.5)^{1}\right) \\ & \left.2 \times(0.75 \ldots 2.5)^{1}\right) \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 2.5)^{1)} \\ & \left.2 \times(2.5 \ldots 6)^{1}\right)^{\prime} \\ & \operatorname{max..~} 1 \times 10 \end{aligned}$	$\begin{aligned} & \left.2 \times(1 \ldots 25)^{1}\right) \\ & 1 \times(1 \ldots 35)^{1)^{\prime}} \\ & 1 \times(1 \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 35)^{1)} \\ & \left.1 \times(2.5 \ldots 50)^{1}\right)^{\prime} \end{aligned}$
AWG	$\begin{aligned} & \left.2 \times(20 \ldots 16)^{1}\right) \\ & \left.2 \times\left(\begin{array}{lll} 18 \ldots & 14 \end{array}\right)^{1}\right)^{\prime}, \end{aligned}$	$\begin{aligned} & 2 \times(16 \ldots 12)^{1)} \\ & \left.2 \times(14 \ldots 8)^{1}\right)^{1} \end{aligned}$	$\begin{aligned} & 2 \times(18 \ldots 2)^{1)} \\ & 1 \times(18 \ldots .1)^{11} \end{aligned}$	$\begin{aligned} & 2 \times(10 \ldots 1 / 0)^{1)} \\ & \left.1 \times(10 \ldots 2 / 0)^{1}\right)^{\prime} \end{aligned}$

Removable box terminals ${ }^{\text {2 }}$

- With copper bars ${ }^{3}$

Connection type

Operating devices
Conductor cross-sections (min./max.),
1 conductor can be connected

- Solid or stranded
- Finely stranded without end sleeve
- Finely stranded with end sleeve (DIN 46228-1)
- AWG cables, solid or stranded

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified
2) Cable lug and busbar connection possible after removing the box terminals.
$\mathrm{mm}^{2} 1 \times(0.5 \ldots 4) \quad 1 \times(1 \ldots 10)$
$\mathrm{mm}^{2} 1 \times(0.5 \ldots 2.5) \quad 1 \times(1 \ldots 6)$
$\mathrm{mm}^{2} 1 \times(0.5 \ldots 2.5) \quad 1 \times(1 \ldots 6)$
AWG $1 \times(20 \ldots 12) \quad 1 \times(18 \ldots 8)$
3) If bars larger than $12 \mathrm{~mm} \times 10 \mathrm{~mm}$ are connected, a 3RT2946-4EA2 cover is needed to maintain the required phase clearance, see page 7/89
4) When conductors larger than $25 \mathrm{~mm}^{2}$ are connected, the 3RT2946-4EA2 cover is needed to maintain the required phase clearance, see page 7/89

Type		3RU2116	3RU2126	3RU2136	3RU2146
Size		SOO	SO	S2	S3
Auxiliary circuit					
Number of NO contacts		1			
Number of NC contacts		1			
Auxiliary contacts - assignment		1 NO for the signal "tripped"; 1 NC for disconnecting the contactor			
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	690			
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$	kV	6			
Contact rating of the auxiliary contacts					
```- NC, NO contact with alternating current AC-15, rated operational current \(I_{\mathrm{e}}\) at \(U_{\mathrm{e}}\) - 24 V - 120 V - 125 V - 230 V - 400 V - 600 V - 690 V```	A A A A A A A	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 2 \\ & 1 \\ & 0.75 \\ & 0.75 \end{aligned}$			
$\begin{aligned} & \text { - NC, NO contacts with DC current DC-13, } \\ & \text { rated operational current } I_{\mathrm{e}} \text { at } U_{\mathrm{e}} \\ & -24 \mathrm{~V} \\ & -110 \mathrm{~V} \\ & -125 \mathrm{~V} \\ & -220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	1 0.22 0.22 0.11			
- Contact reliability (suitability for PLC control; $17 \mathrm{~V}, 5 \mathrm{~mA}$ )		Yes			
Short-circuit protection					
- With fuse   - Operational class gG   - Quick	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$				
- With miniature circuit breaker (C characteristic)	A	6 (up to $I_{\mathrm{k}} \leq 0.5 \mathrm{kA} ; U \leq 260 \mathrm{~V}$ )			
Permissible operational voltage for protective separation between auxiliary current paths   Acc. to IEC 60947-1	V	440			
CSA, UL, UR rated data					
Auxiliary circuit - switching capacity		B600, R300			
Conductor cross-sections for auxiliary circuit					
Connection type		(1) Screw terminals			
Terminal screw		M3, Pozidriv size 2			
Operating devices	mm	$\varnothing 5 \ldots 6$			
Prescribed tightening torque	Nm	$0.8 \ldots 1.2$			
Conductor cross-sections (min./max.), 1 or 2 conductors can be connected					
- Solid or stranded   - Finely stranded with end sleeve (DIN 46228-1)   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{AWG} \end{aligned}$	$2 \times(0.5 \ldots$ $2 \times(0.5 \ldots$ $2 \times(20 \ldots 1$	$\times(0.75 \ldots 2$ $\times(0.75 \ldots 2$ $\times(18 \ldots 14)^{1}$		
Connection type		Spring-type terminals			
Operating devices	mm	$3.0 \times 0.5$ and $3.5 \times 0.5$			
Conductor cross-sections (min./max.), 1 or 2 conductors can be connected					
- Solid or stranded   - Finely stranded without end sleeve   - Finely stranded with end sleeve (DIN 46228-1)   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$2 \times(0.5 \ldots$ $2 \times(0.5 \ldots$ $2 \times(0.5 \ldots$ $2 \times(20 \ldots 1$			

${ }^{1)}$ If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.

## Overload Relays

SIRIUS 3RU2 Thermal Overload Relays
3RU2 for standard applications IE3/IE4 ready
Selection and ordering data
3RU21 thermal overload relays for mounting onto contactor ${ }^{1)}$, sizes S00 and S0, CLASS 10

Features and technical specifications:

- Switch position indicator
- Connection methods

Main and auxiliary circuit: Either screw or spring-type terminals

- Overload and phase failure protection
- Auxiliary contacts $1 \mathrm{NO}+1 \mathrm{NC}$
- Manual and automatic RESET
- TEST function
- STOP button
- Sealable covers (optional accessory)

PU (UNIT, SET, M) = 1
PS* $=1$ unit
$\mathrm{PG} \quad=41 \mathrm{~F}$

3RU2116-4AB0		3RU2116-4AC0							
Size Trip class contac- tor	Rated power for three-phase motors, rated value ${ }^{2)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{3)}$	SD	Screw terminals	(H)	SD	Spring-type terminals	00
Class	kW	A	A	d	Article No.	Price per PU	d	Article No.	Price per PU
Size S00									
$\begin{array}{ll} \text { SOO } & 10 \\ & 10 \\ & 10 \\ & 10 \end{array}$	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.06 \\ & 0.09 \end{aligned}$	$\begin{array}{lll} 0.11 \ldots & 0.16 \\ 0.14 & \ldots & 0.2 \\ 0.18 & \ldots .25 \\ 0.22 & \ldots & 0.32 \end{array}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 1.6 \end{aligned}$		3RU2116-0AB0 3RU2116-0BBO 3RU2116-0CB0 3RU2116-0DB0		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RU2116-0AC0   3RU2116-0BC0   3RU2116-0CC0   3RU2116-0DC0	
$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.12 \\ & 0.18 \\ & 0.18 \end{aligned}$	$\begin{array}{lll} 0.28 & \ldots .4 \\ 0.35 & 0.5 \\ 0.45 & 0.5 & 0.63 \\ 0.55 & \ldots & 0.8 \end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$		3RU2116-0EB0 3RU2116-0FB0 3RU2116-0GB0 3RU2116-0HB0		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RU2116-0EC0   3RU2116-0FC0   3RU2116-0GC0   3RU2116-0HCO	
$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.37 \\ & 0.55 \\ & 0.75 \end{aligned}$	$\begin{aligned} & \hline 0.7 \ldots .1 \\ & 0.9 \ldots 1.25 \\ & 1.1 \ldots 1.6 \\ & 1.4 \ldots .2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 6 \\ & 6 \end{aligned}$		3RU2116-0JB0 3RU2116-0KB0 3RU2116-1AB0 3RU2116-1BBO		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RU2116-0JCO } \\ & \text { 3RU2116-0KC0 } \\ & \text { 3RU2116-1ACO } \\ & \text { 3RU2116-1BC0 } \end{aligned}$	
$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.1 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.8 \ldots 2.5 \\ & 2.2 \ldots 3.2 \\ & 2.8 \ldots 4 \\ & 3.5 \ldots 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 16 \\ & 20 \end{aligned}$		3RU2116-1CB0 3RU2116-1DB0 3RU2116-1EB0 3RU2116-1FB0		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RU2116-1CCO } \\ & \text { 3RU2116-1DC0 } \\ & \text { 3RU2116-1EC0 } \\ & \text { 3RU2116-1FC0 } \end{aligned}$	
$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	2.2 3 4 5.5	$\begin{aligned} & 4.5 \ldots 6.3 \\ & 5.5 \ldots 8 \\ & 7 \ldots 10 \\ & 9 \ldots 12.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 35 \\ & 35 \end{aligned}$		3RU2116-1GB0 3RU2116-1HB0 3RU2116-1JB0 3RU2116-1KB0		$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RU2116-1GCO } \\ & \text { 3RU2116-1HCO } \\ & \text { 3RU2116-1JC0 } \\ & \text { 3RU2116-1KC0 } \end{aligned}$	
10	7.5	$11 \ldots 16$	40	-	3RU2116-4AB0		5	3RU2116-4ACO	
Size so									
SO 10    10   10     10    10	$\begin{aligned} & 0.75 \\ & 1.1 \\ & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \ldots 2.5 \\ & 2.2 \ldots 3.2 \\ & 2.8 \ldots 4 \\ & 3.5 \ldots 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 16 \\ & 20 \end{aligned}$		3RU2126-1CB0 3RU2126-1DB0 3RU2126-1EB0 3RU2126-1FB0		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RU2126-1CCO } \\ & \text { 3RU2126-1DCO } \\ & \text { 3RU2126-1EC0 } \\ & \text { 3RU2126-1FC0 } \end{aligned}$	
$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	2.2 3 4 5.5	$\begin{aligned} & 4.5 \ldots 6.3 \\ & 5.5 \ldots 8 \\ & 7 \ldots 10 \\ & 9 \ldots 12.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 35 \\ & 35 \end{aligned}$		$\begin{aligned} & \text { 3RU2126-1GBO } \\ & \text { 3RU2126-1 HBO } \\ & \text { 3RU2126-1 JB0 } \\ & \text { 3RU2126-1KB0 } \end{aligned}$		$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RU2126-1GCO } \\ & \text { 3RU2126-1HC0 } \\ & \text { 3RU2126-1JC0 } \\ & \text { 3RU2126-1KC0 } \end{aligned}$	
$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	7.5 7.5 11 11	$\begin{array}{lll} 11 \ldots & 16 \\ 14 \ldots & 20 \\ 17 \ldots & 22 \\ 20 \ldots & \ldots 5 \end{array}$	$\begin{aligned} & 40 \\ & 50 \\ & 63 \\ & 63 \end{aligned}$		3RU2126-4AB0 3RU2126-4BB0 3RU2126-4CB0 3RU2126-4DB0			$\begin{aligned} & \text { 3RU2126-4ACO } \\ & \text { 3RU2126-4BCO } \\ & \text { 3RU2126-4CCO } \\ & \text { 3RU2126-4DC0 } \\ & \hline \end{aligned}$	
$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 18.5 \\ & 18.5 \end{aligned}$	$\begin{array}{lll} 23 \ldots & 28 \\ 27 \ldots & 32 \\ 30 \ldots 36 \\ 34 \ldots & \ldots 0 \end{array}$	$\begin{aligned} & 63 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$		3RU2126-4NBO 3RU2126-4EB0 3RU2126-4PBO 3RU2126-4FBO		-	$\begin{aligned} & \text { 3RU2126-4NC0 } \\ & \text { 3RU2126-4EC0 } \\ & \text { 3RU2126-4PC0 } \\ & \text { 3RU2126-4FC0 } \end{aligned}$	

1) With the appropriate terminal supports (see "Accessories", page $7 / 88$ ), the 3RU2 overload relays for mounting on contactors can also be installed as stand-alone units.
2) Guide value for 4 -pole standard motors at 50 Hz 400 V AC . The actual starting and rated data of the motor to be protected must be considered when selecting the units.
3) Maximum protection by fuse only for overload relays, type of coordination "2". For fuse values in connection with contactors, see Configuration Manual.

Overload relays in size S2, see page 7/85.

3RU21 thermal overload relays for mounting onto contactor ${ }^{1)}$, sizes S2 and S3, CLASS 10 or 10A
Features and technical specifications:

- Connection methods
- Main circuit: Screw terminals with box terminal
- Auxiliary circuit: Either screw or spring-type terminals
- Overload and phase failure protection
- Auxiliary contacts $1 \mathrm{NO}+1 \mathrm{NC}$
- Manual and automatic RESET
- Switch position indicator

- TEST function
- STOP button
- Sealable covers (optional accessory)

PU (UNIT, SET, M) $=1$
PS* $=1$ unit
PG $\quad=41 \mathrm{~F}$

Size contactor	Trip class	Rated power for three-phase motors, rated value ${ }^{2)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{3}$ )	SD	Screw terminals	(1)	SD	Spring-type terminals (on auxiliary current side)
	Class	kW	A	A	d	Article No.	Price per PU	d	Article No. $\begin{array}{r}\text { Price } \\ \text { per PU }\end{array}$
Size S2									
S2	10 10 10 10	7.5 7.5 11 15	$\begin{aligned} & 11 \ldots \\ & 14 \ldots \\ & 18 \\ & 18 \\ & 22 \\ & 22 \end{aligned}$	40 50 63 80	5 5 5 5	3RU2136-4AB0   3RU2136-4BB0   3RU2136-4DB0   3RU2136-4EB0		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 3RU2136-4ADO } \\ & \text { 3RU2136-4BDO } \\ & \text { 3RU2136-4DDO } \\ & \text { 3RU2136-4EDO } \end{aligned}$
	10	18.5	$28 . . .40$	80	5	3RU2136-4FB0		5	3RU2136-4FD0
	10	22	$36 . . .45$	100	-	3RU2136-4GB0		-	3RU2136-4GD0
	10	22	$40 \ldots 50$	100	-	3RU2136-4HB0		-	3RU2136-4HD0
	10	30	$47 . .57$	100	$\checkmark$	3RU2136-4QB0		$\checkmark$	3RU2136-4QD0
	10	30	54... 65	125	-	3RU2136-4JB0		-	3RU2136-4JD0
	10A	37	$62 \ldots 73$	160	-	3RU2136-4KB0		$\checkmark$	3RU2136-4KD0
	10A	37	$70 \ldots 80$	160	$\checkmark$	3RU2136-4RB0		-	3RU2136-4RD0
Size S3 NEW									
S3	10	18.5	$28 . . .40$	80	1	3RU2146-4FB0		5	3RU2146-4FD0
	10	22	$36 . . .50$	125	1	3RU2146-4HB0		5	3RU2146-4HD0
	10	30	$45 . .63$	125	1	3RU2146-4JB0		1	3RU2146-4JD0
	10	37	$57 \ldots 75$	160	1	3RU2146-4KB0		1	3RU2146-4KD0
	10	45	$70 \ldots 90$	160	1	3RU2146-4LB0		1	3RU2146-4LD0
	10	45	$80 \ldots 100^{4)}$	200	1	3RU2146-4MB0		1	3RU2146-4MD0

1) With the appropriate terminal supports (see "Accessories", page $7 / 88$ ), the 3RU2 overload relays for mounting on contactors can also be installed as stand-alone units.
2) Guide value for 4-pole standard motors at 50 Hz 400 VAC . The actual starting and rated data of the motor to be protected must be considered when selecting the units.

## Overload Relays

SIRIUS 3RU2 Thermal Overload Relays

## 3RU2 for standard applications IE3/IE4 ready

3RU21 thermal overload relays for stand-alone installation, sizes S00 and SO, CLASS 10
Features and technical specifications:

- Connection methods

Main and auxiliary circuit: Either screw or spring-type terminals

- Overload and phase failure protection
- Auxiliary contacts $1 \mathrm{NO}+1 \mathrm{NC}$
- Manual and automatic RESET


3RU2116-..B1


3RU2116-..C1


3RU2126-..B1

- Switch position indicator
- TEST function
- STOP button
- Sealable covers (optional accessory)

PU (UNIT, SET, M) $=1$
PS* $=1$ unit
PG $=41 \mathrm{~F}$

Size contactor	Trip class	Rated power for three-phase motors, rated value ${ }^{1 \text { ) }}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{2}{ }^{2}$	SD	Screw terminals	(1)	SD	Spring-type terminals	$0$
	Class	kW	A	A	d		$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$	d	Article No.	Price per PU
Size S00										
S00	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.06 \\ & 0.09 \end{aligned}$	$\begin{array}{lll} 0.11 & \ldots & 0.16 \\ 0.14 & \ldots & 0.2 \\ 0.18 & \ldots & 0.25 \\ 0.22 & \ldots & 0.32 \end{array}$	$\begin{aligned} & 0.5 \\ & 1 \\ & 1 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RU2116-0AB1 3RU2116-0BB1 3RU2116-0CB1 3RU2116-0DB1		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RU2116-0AC1   3RU2116-0BC1   3RU2116-0CC1   3RU2116-0DC1	
	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.12 \\ & 0.18 \\ & 0.18 \end{aligned}$	0.28 $\ldots$ 0.4   0.35 0.5    0.45 0.5    0.65     0.55 $\ldots .8$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 4 \end{aligned}$	5 5 5 5	3RU2116-0EB1 3RU2116-0FB1 3RU2116-0GB1 3RU2116-0HB1		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RU2116-0EC1 3RU2116-0FC1   3RU2116-0GC1   3RU2116-0HC1	
	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.37 \\ & 0.55 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.7 \ldots 1 \\ & 0.9 \ldots 1.25 \\ & 1.1 \ldots 1.6 \\ & 1.4 \ldots .2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 6 \\ & 6 \end{aligned}$	5 5 5 5	3RU2116-0JB1 3RU2116-0KB1 3RU2116-1AB1 3RU2116-1BB1		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RU2116-0JC1 3RU2116-0KC1 3RU2116-1AC1 3RU2116-1BC1	
	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.1 \\ & 1.5 \\ & 1.5 \end{aligned}$	$1.8 \ldots 2.5$ $2.2 \ldots 3.2$ $2.8 \ldots 4$ $3.5 \ldots 5$	$\begin{aligned} & 10 \\ & 10 \\ & 16 \\ & 20 \end{aligned}$	5 5 5 5	3RU2116-1CB1 3RU2116-1DB1 3RU2116-1EB1 3RU2116-1FB1		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RU2116-1CC1 3RU2116-1DC1 3RU2116-1EC1 3RU2116-1FC1	
	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3 \\ & 4 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.5 \ldots 6.3 \\ & 5.5 \ldots 8 \\ & 7 \ldots 10 \\ & 9 \ldots 12.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3RU2116-1GB1   3RU2116-1HB1   3RU2116-1JB1   3RU2116-1KB1		$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	3RU2116-1GC1   3RU2116-1HC1   3RU2116-1JC1   3RU2116-1KC1	
	10	7.5	$11 \ldots 16$	40	5	3RU2116-4AB1		5	3RU2116-4AC1	
Size S0										
SO	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 14 \ldots 20 \\ & 17 \ldots 22 \\ & 20 . . .25 \end{aligned}$	$\begin{aligned} & 50 \\ & 63 \\ & 63 \end{aligned}$	5 5 5	3RU2126-4BB1 3RU2126-4CB1 3RU2126-4DB1		$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	3RU2126-4BC1 3RU2126-4CC1 3RU2126-4DC1	
	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 15 \\ & 18.5 \\ & 18.5 \end{aligned}$	$23 \ldots 28$ $27 \ldots 32$ $30 \ldots 36$ $34 \ldots 40$	$\begin{aligned} & 63 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	5 5 5 5	3RU2126-4NB1 3RU2126-4EB1 3RU2126-4PB1 3RU2126-4FB1		5 5 5 5	3RU2126-4NC1 3RU2126-4EC1 3RU2126-4PC1 3RU2126-4FC1	

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Maximum protection by fuse only for overload relays, type of coordination "2". For fuse values in connection with contactors, see Configuration Manual.

3RU21 thermal overload relays for stand-alone installation, sizes S2 and S3, CLASS 10 or 10A

Features and technical specifications:

- Connection methods
- Main circuit: Screw terminals with box terminal
- Auxiliary circuit: Either screw or spring-type terminals
- Auxiliary contacts $1 \mathrm{NO}+1 \mathrm{NC}$
- Manual and automatic RESET
- Switch position indicator


3RU2136-..B1


3RU2136-..D1

- TEST function
- STOP button
- Sealable covers (optional accessory)

PU (UNIT, SET, M) $=1$
PS* $\begin{aligned} & =1 \text { unit }\end{aligned}$
$\mathrm{PG} \quad=41 \mathrm{~F}$


3RU2146-..B1


3RU2146-..D1

Size contactor	Trip class	Rated power for three-phase motors, rated value ${ }^{1)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{2}{ }^{2}$	SD	Screw terminals	(H)	SD	Spring-type terminals	$0$
	CLASS	kW	A	A	d	Article No.	Price per PU	d	Article No.	Price per PU
Size S2										
S2	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 18.5 \\ & 22 \end{aligned}$	$\begin{aligned} & 22 \ldots 32 \\ & 28 \ldots 40 \\ & 36 \ldots 45 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \end{aligned}$	3RU2136-4EB1   3RU2136-4FB1   3RU2136-4GB1		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	3RU2136-4ED1   3RU2136-4FD1   3RU2136-4GD1	
	10   10   10   10	$\begin{aligned} & 22 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \ldots 50 \\ & 47 \ldots 57 \\ & 54 \ldots 65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 125 \end{aligned}$		$\begin{aligned} & \text { 3RU2136-4HB1 } \\ & \text { 3RU2136-4QB1 } \\ & \text { 3RU2136-4JB1 } \end{aligned}$			$\begin{aligned} & \text { 3RU2136-4HD1 } \\ & \text { 3RU2136-4QD1 } \\ & \text { 3RU2136-4JD1 } \end{aligned}$	
	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	$\begin{aligned} & 62 \ldots 73 \\ & 70 \ldots 80 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	-	3RU2136-4KB1 3RU2136-4RB1		$>$	3RU2136-4KD1 3RU2136-4RD1	

## Size S3 NEW

S3	10	30	$45 \ldots 63$	125
	10	37	$57 \ldots 75$	160
	10	45	$70 \ldots 90$	160


125
160
160

200

		3RU2146-4JB1	5
1	3RU2146-4KB1	5	3RU2146-4JD1
1	3RU2146-4LB1	5	3RU2146-4KD1
1	3RU2146-4MB1	$X$	3RU2146-4MD1
1	3RU214		

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered
${ }^{3)}$ For overload relays $>100 \mathrm{~A}$, see 3RB2 electronic overload relays, page 7/102 onwards.
when selecting the units.
2) Maximum protection by fuse only for overload relays, type of coordination "2". For fuse values in connection with contactors, see Configuration Manual.

## Overload Relays

SIRIUS 3RU2 Thermal Overload Relays

## Accessories

## Overview

The following optional accessories are available for the 3RU21 thermal overload relays:

- Size-specific terminal support for stand-alone installation, in sizes SOO and SO also with spring-type terminals
- Mechanical RESET (for all sizes)
- Cable release for resetting devices which are difficult to access (for all sizes)
- Electrical remote RESET module in three voltage variants (for all sizes)
- Sealable cover (for all sizes)
- Terminal covers for devices with screw terminals (box terminals) and ring terminal lug connections


## Selection and ordering data




## General accessories



1) PC labeling system for individual inscription of unit labeling plates available from murrplastik Systemtechnik GmbH
(see page 16/20).

## Overload Relays

SIRIUS 3RB3 Electronic Overload Relays

## 3RB30, 3RB31 for standard applications

## Overview

## More information

Home page, see http://www.siemens.com/sirius-overloadrelays Industry Mall, see www.siemens.com/product?3RB3
Conversion tool, e.g. from 3RB20/3RB211 to 3RB30/3RB31, see www.siemens.com/sirius/conversion-tool

Application Manual "SIRIUS Controls with IE3/IE4 Motors", see https://support.industry.siemens.com/cs/ww/en/view/94770820
Manual "SIRIUS - SIRIUS 3RU Thermal Overload Relays / SIRIUS 3RB Electronic Overload Relays", see
https://support.industry.siemens.com/cs/ww/en/view/60298164
Characteristics and certificates, see
https://support.industry.siemens.com/cs/ww/en/ps/16276


Mountable accessories for 3RB30 and 3RB31 electronic overload relays

## Overload Relays SIRIUS 3RB3 Electronic Overload Relays

## 3RB30, 3RB31 for standard applications

Switch position indicator and TEST function of the wiring: Indicates a trip and enables the wiring test.
(2) Trip class setting/internal ground-fault detection (only 3RB31) Using the rotary switch you can set the required trip class and activate the internal ground-fault detection dependent on the start-up conditionsSolid-state test (device test): Enables a test of all important device components and functions
(4) Connecting terminals (removable joint block for auxiliary circuits): Depending on the device version, the terminals for screw and spring-type connection are configured for the main and auxiliary circuit
(5) Selector switch for manual/automatic RESET: With the slide switch you can choose between manual and automatic RESET.
6 Motor current setting
Setting the device to the rated motor current is easy with the large rotary knob.
7) A device set to manual RESET can be reset locally by pressing the RESET button. On 3RB31 overload relays an electrical remote RESET is integrated.
(8) Connection for mounting onto contactors Optimally adapted in electrical, mechanical and design terms to the contactors 3RT2. The overload relay can be connected directly using these connection pins. Stand-alone installation is possible as an alternative (in conjunction with a terminal support for stand-alone installation).
A sealable transparent cover can be optionally mounted (accessory). It secures the motor current setting against adjustment.

The 3RB30/3RB31 electronic overload relays up to 115 A with internal power supply have been designed for current-dependent protection of loads with normal and heavy starting, and to protect against excessive temperature rises due to overload phase asymmetry or phase failure. An overload, phase asymmetry or phase failure result in an increase of the motor current be yond the set rated motor current. This current rise is detected by the current transformers integrated into the devices and evaluated by corresponding solid-state circuits which then output a pulse to the auxiliary contacts. The auxiliary contacts then switch off the load by means of a contactor. The break time depends on the ratio between the tripping current and the current setting $I_{\mathrm{e}}$ and is stored in the form of a long-term stable tripping characteristic curve, (see Characteristic curves)

In addition to inverse-time delayed protection of loads against excessive temperature rises due to overload, phase asymmetry and phase failure, the 3RB31 electronic overload relays also allow internal ground-fault detection (not possible in conjunction with contactor assemblies for wye-delta starting). This provides protection of loads against high-resistance short circuits due to damage to the insulation material, moisture, condensed water etc.
The "tripped" status is signaled by means of a switch position indicator. The relay is reset manually or automatically after the recovery time has elapsed
The 3RB3 electronic overload relays are suitable for operation with frequency converters.

The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials. They comply with all important worldwide standards and approvals.
3RB20 and 3RB21 overload relays in sizes S6 to S10/S12, see page 7/109 onwards.

## Use in hazardous areas

The 3RB30/3RB31 electronic overload relays are suitable for the overload protection of motors with the following types of protection:

- Ex $\|$ (2) $G$ [Ex e] [Ex d] [Ex px]
- $\varepsilon_{x} \|$ II (2) D [Ex t] [Ex p]

EC type test certificate for Group II, Category (2) G/D exists. It has the number PTB 09 ATEX 3001.

Overload Relays
SIRIUS 3RB3 Electronic Overload Relays

## 3RB30, 3RB31 for standard applications

## Article No. scheme



Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers

For your orders please use the article numbers quoted in the selection and ordering data.

## Benefits

The most important features and benefits of the 3RB30/3RB31 electronic overload relays are listed in the overview table (see "General Data" page 7/71 onwards).

## Advantages through energy efficiency



We offer you a unique portfolio for industrial energy management, using an energy management system that helps to optimally define your energy needs. We split up our industrial energy management into three phases - identify, evaluate, and realize - and we support you with the appropriate hardware and software solutions in every process phase.
The innovative products of the SIRIUS industrial controls portfolio can also make a substantial contribution to a plant's energy efficiency (see www.siemens.com/sirius/energysaving),
3RB30/3RB31 electronic overload relays contribute to energy efficiency throughout the plant as follows:

- Reduced inherent power loss
- Less heating of the control cabinet
- Smaller control cabinet air conditioners can be used

Overview of the energy management process

## Application

## Industries

The 3RB30/3RB31 electronic overload relays are suitable for customers from all industries who want to guarantee optimum in-verse-time delayed protection of their electrical loads (e.g. motors) under normal and heavy starting conditions (CLASS 5E to 30E), minimize project completion times, inventories and energy consumption, and optimize plant availability and maintenance management.

## Application

The 3RB30/3RB31 electronic overload relays have been designed for the protection of three-phase motors in sinusoidal $50 / 60 \mathrm{~Hz}$ voltage networks. The relays are not suitable for the protection of single-phase AC or DC loads.

The 3RU21 thermal overload relay or the 3RB22/3RB23/3RB24 electronic overload relay can be used for single-phase AC loads. For DC loads we recommend the 3RU21 thermal overload relay.

## Ambient conditions

The devices are insensitive to external influences such as shocks, corrosive ambient conditions, ageing and temperature fluctuations.
For the temperature range from $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, the 3RB30/3RB31 electronic overload relays compensate the temperature in accordance with IEC 60947-4-1.

## Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

## Note:

For the use of 3RB30/3RB31 electronic overload relays in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual
For more information, see Preface on page 7.

## Technical specifications

## More information

System Manual "SIRIUS - System Overview", see
https://support. industry. siemens.com/cs/ww/en/view/60311318
Configuration Manual "Configuring SIRIUS Innovations - Selection Data for Fuseless and Fused Load Feeders", see
https://support.industry.siemens.com/cs/ww/en/view/39714188

Manual "SIRIUS - SIRIUS 3RU Thermal Overload Relays /
SIRIUS 3RB Electronic Overload Relays", see
https://support.industry.siemens.com/cs/ww/en/view/60298164
Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16276/td

The following technical information is intended to provide an initial overview of the various types of device and functions.

Type   Size		$\begin{aligned} & \text { 3RB3016, 3RB3113 } \\ & \text { S00 } \end{aligned}$	$\begin{aligned} & \text { 3RB3026, 3RB3123 } \\ & \text { SO } \end{aligned}$	$\begin{aligned} & \text { 3RB3036, 3RB3133 } \\ & \text { S2 } \end{aligned}$	3RB3046, 3RB3143 S3
Dimensions ( $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$ ) (overload relay with stand-alone installation support)					
- Screw terminals	mm	$45 \times 89 \times 80$	$45 \times 97 \times 94$	$55 \times 105 \times 117$	$70 \times 106 \times 124$
- Spring-type terminals	mm	$45 \times 102 \times 80$	$45 \times 116 \times 95$	$55 \times 105 \times 117$	$70 \times 106 \times 124$
General data					
Tripping in the event of		Overload, phase failure and phase asymmetry + ground fault (for 3RB31 only)			
Trip class acc. to IEC 60947-4-1	CLASS	3RB30: 10E, 20E;   3RB31: 5E, 10E, 20E or 30E adjustable			
Phase failure sensitivity		Yes			
Reset and recovery					
- Reset options after tripping		Manual and automatic RESET, 3RB31 has an integrated connection for electrical remote RESET (24 V DC)			
- Recovery time					
- For automatic RESET		Approx. 3 min			
- For manual RESET		Immediately			
- For remote RESET		Immediately			
Features					
- Display of operating state on device		Yes, by means of switch position indicator slide			
- TEST function		Yes, test of electronics by pressing the TEST button/test of auxiliary contacts and wiring of control circuit by actuating the switch position indicator slide/self-monitoring			
- RESET button		Yes			
- STOP button		No			
Protection and operation of explosion-proof motors					
EC type-examination certificate number according to directive 2014/34/EU (ATEX)		PTB 09 ATEX 3001   §x II (2) G [Ex e] [Ex d] [Ex px]			
		£xx II (2) G [Ext] [Exp]			
		see https://support.industry.siemens.com/cs/ww/en/view/40591327			
Ambient temperatures					
- Storage/tran sport	${ }^{\circ} \mathrm{C}$	$-40 \ldots+80$			
- Operation	${ }^{\circ} \mathrm{C}$	-25 ... +60			
- Temperature compensation	${ }^{\circ} \mathrm{C}$	+60			
- Permissible rated current at					
- Temperature inside control cabinet $60^{\circ} \mathrm{C}$	\%	100			
- Temperature inside control cabinet $70{ }^{\circ} \mathrm{C}$	\%	On request			
Repeat terminals					
- Coil repeat terminals		Yes	Not required		
- Auxiliary contact repeat terminal		Yes	Not required		
Degree of protection acc. to IEC 60529					
- Screw terminals/spring-type terminals		IP20		- IP20 (front side)   - Terminal IPOO (use additional terminal covers for higher degree of protection)	
- Straight-through transformers		--		IP20	
Touch protection acc. to IEC 60529		Finger-safe		Finger-safe, for vertical contact from the front	
Shock resistance with sine acc. to IEC 60068-2-27	$\mathrm{g} / \mathrm{ms}$	15/11   (signaling contact 97/98 in "Tripped" position: $9 \mathrm{~g} / 11 \mathrm{~ms}$ )		15/11   (signaling contact 97/98 in "Tripped" position: $8 \mathrm{~g} / 11 \mathrm{~ms}$ )	

## Overload Relays

SIRIUS 3RB3 Electronic Overload Relays

## 3RB30, 3RB31 for standard applications

## Type

Size
Dimensions (W x H x D)
(overload relay with stand-alone installation
support)


3RB3016, 3RB3113 3RB3026, 3RB3123 3RB3036, 3RB3133 3RB3046, 3RB3143

- Screw terminals
mm $45 \times 89 \times 80$
$45 \times 97 \times 94$
$55 \times 105 \times 117 \quad 70 \times 106 \times 124$
- Spring-type terminals
$\mathrm{mm} \quad 45 \times 102 \times 80$
$45 \times 116 \times 95$
$55 \times 105 \times 117 \quad 70 \times 106 \times 124$

General data (continued)
Electromagnetic compatibility (EMC) - Interference immunity

- Conductor-related interference

$$
\begin{aligned}
& \text { - Burst acc. to IEC 61000-4-4 } \\
& \text { (corresponds to degree of severity 3) }
\end{aligned}
$$

- Surge acc. to IEC 61000-4-5 (corresponds to degree of severity 3)
- Electrostatic discharge according to IEC 61000-4-2 (corresponds to degree of severity 3 )
- Field-related interference acc. to IEC 61000-4-3 V/m 10 (corresponds to degree of severity 3)

Electromagnetic compatibility (EMC) - Emitted interference	Degree of severity B acc. to EN 55011 (CISPR 11) and EN 55022 (CISPR 22)	
Resistance to extreme climates $\boldsymbol{-}$ air humidity	$\%$	95
Installation altitude above sea level	m	Up to 2000
Mounting position	Any	
Type of mounting	Direct mounting/stand-alone installation with terminal support	


| Type |  | 3RB3016, 3RB3113 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Size |  |  |



Overload Relays
SIRIUS 3RB3 Electronic Overload Relays

## 3RB30, 3RB31 for standard applications

Type		3RB3016, 3RB3113	3RB3026, 3RB3123	3RB3036, 3RB3133	3RB3046, 3RB3143
Size		S00	SO	S2	S3
Auxiliary circuit					
Number of NO contacts		1			
Number of NC contacts		1			
Auxiliary contacts - assignment		1 NO for the signal "tripped";   1 NC for disconnecting the contactor			
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$ (pollution degree 3)	V	300			
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	kV	4			
Auxiliary contacts - contact rating					
- NC, NO contact with alternating current AC-14/AC-15, rated operational current $I_{\mathrm{e}}$ at $U_{\mathrm{e}}$ $-24 \mathrm{~V}$   - 120 V   - 125 V   - 250 V	A A A A	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 3 \end{aligned}$			
- NC, NO contacts with DC current DC-13, rated operational current $I_{\mathrm{e}}$ at $U_{\mathrm{e}}$ $-24 \mathrm{~V}$   - 60 V   - 110 V   - 125 V   - 250 V	A A A A A	$\begin{aligned} & 2 \\ & 0.55 \\ & 0.3 \\ & 0.3 \\ & 0.11 \end{aligned}$			
- Conventional thermal current $I_{\text {th }}$	A	5			
- Contact reliability (suitability for PLC control; 17 V, 5 mA )		Yes			
Short-circuit protection					
- With fuse, operational class gG	A	6			
Ground-fault protection (only 3RB31)   - Tripping value $I_{\Delta}$   - Operating range I   - Response time $t_{\text {trip }}$ (in steady-state condition)	s	The information refer $>0.75 \times I_{\text {motor }}$   Lower current setting $<1$	s to sinusoidal residua $<I_{\text {motor }}<3.5 \times \text { uppe }$	currents at $50 / 60 \mathrm{~Hz}$   current setting	
Integrated electrical remote RESET (only 3RB31)					
Connecting terminals A3, A4		24 V DC, max. 200 mA for approx. 20 ms , then < 10 mA			
Protective separation between auxiliary current paths acc. to IEC 60947-1	V	300			


Type		3RB3016, 3RB3113	3RB3026, 3RB3123	3RB3036, 3RB3133	3RB3046, 3RB3143
Size		SOO	So	S2	S3
CSA, UL, UR rated data					
Auxiliary circuit - switching capacity		B600, R300			
Conductor cross-sections for auxiliary circuit					
Connection type		Screw terminals			
Terminal screw		M3, Pozidriv size 2			
Operating devices	mm	$\varnothing 5 \ldots 6$			
Prescribed tightening torque Nm		0.8 ... 1.2			
Conductor cross-sections (min./max.), 1 or 2 conductors can be connected					
- Solid or stranded	$\mathrm{mm}^{2}$	$1 \times(0.5 \ldots 4)^{1}, 2 \times(0.5 \ldots 2.5)^{1)}$			
- Finely stranded with end sleeve (DIN 46228-1)	$\mathrm{mm}^{2}$	$1 \times(0.5 \ldots 2.5)^{1)}, 2 \times(0.5 \ldots 1.5)^{1)}$			
- AWG cables, solid or stranded	AWG	$2 \times(20 . .14)$			
Connection type		O Spring-type terminals			
Operating devices mm $3.0 \times 0.5$   Conductor cross-sections (min./max.),     1 or 2 conductors can be connected					
- Solid or stranded	$\mathrm{mm}^{2}$	$2 \times(0.25 \ldots 1.5)$			
- Finely stranded without end sleeve	$\mathrm{mm}^{2}$	$2 \times(0.25 \ldots 1.5)$			
- Finely stranded with end sleeve (DIN 46228-1)	$\mathrm{mm}^{2}$	$2 \times(0.25 \ldots 1.5)$			
- AWG cables, solid or stranded	AWG	$2 \times(24 . .16)$			

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified.

## Selection and ordering data

## 3RB30 electronic overload relays, CLASS 10E

Features and technical specifications:

- Connection methods

Sizes SOO and SO:
Main and auxiliary circuit: Either screw or spring-type terminals

- Sizes S2 and S3:

Main circuit: Screw terminals with box terminal or as straight-through transformer,
Auxiliary circuit: Either screw or spring-type terminals

- Overload protection, phase failure protection and asymmetry protection
- Internal power supply
- Auxiliary contacts 1 NO + 1 NC
- Manual and automatic RESET
- Switch position indicator
- TEST function and self-monitoring
- Sealable covers (optional accessory)

PU (UNIT, SET, M) = 1
PS* $=1$ unit
PG $\quad=41 \mathrm{G}$



3RB3026-1.B0


3RB3036-1.B0


3RB3036-1.W1


3RB3046-1.B0


3RB3046-1.W1

Size contactor	Rated power for three-phase motors, rated value ${ }^{1)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{2)}$	SD	Screw terminals	(1)	SD	Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$
	kW	A	A	d	Article No.	Price per PU	d	Article No.	Price per PU
Size S00									
S00	Devices for mounting onto contactor ${ }^{3}$								
	0.04 ... 0.09	$0.1 \ldots 0.4$	4	$\checkmark$	3RB3016-1RB0		2	3RB3016-1RE0	
	$0.12 \ldots 0.37$	$0.32 \ldots 1.25$	6	-	3RB3016-1NB0		2	3RB3016-1NE0	
	$0.55 \ldots 1.5$	1... 4	20	$>$	3RB3016-1PB0		2	3RB3016-1PE0	
	1.1... 5.5	$3 \ldots 12$	25	-	3RB3016-1SB0		2	3RB3016-1SE0	
	$2.2 \ldots 7.5$	$4 \ldots 16$	25	-	3RB3016-1TB0		2	3RB3016-1TE0	
Size So									
S0	Devices for mounting onto contactor ${ }^{3}$								
	0.04 ... 0.09	$0.1 \ldots 0.4$	4	-	3RB3026-1RB0		2	3RB3026-1RE0	
	$0.12 \ldots 0.37$	$0.32 \ldots 1.25$	6	$\bigcirc$	3RB3026-1NB0		2	3RB3026-1NE0	
	$0.55 \ldots 1.5$	1... 4	20	-	3RB3026-1PB0		2	3RB3026-1PE0	
	1.1... 5.5	$3 \ldots 12$	25	-	3RB3026-1SB0		2	3RB3026-1SE0	
	$3 \ldots 11$	6... 25	50	$\checkmark$	3RB3026-1QB0		2	3RB3026-1QE0	
	$5.5 \ldots 18.5$	10... 40	50	$\nabla$	3RB3026-1VB0		2	3RB3026-1VE0	

## Size 52

## S2 Devices with screw terminals (main current side) and

 for mounting onto contactor ${ }^{3}$| 7.5... 22 | 12.5 .. 50 | 250 | $\checkmark$ | 3RB3036-1UB0 | - | 3RB3036-1UD0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11... 37 | $20 . . .80$ | 250 | $\checkmark$ | 3RB3036-1WB0 | $\checkmark$ | 3RB3036-1WD0 |
| Devices with straight-through transformer for stand-alone installation |  |  |  |  |  |  |
| $\begin{aligned} & 7.5 \ldots 22 \\ & 11 \ldots 37 \end{aligned}$ | $\begin{aligned} & 12.5 \ldots 50 \\ & 20 \ldots 80 \end{aligned}$ | 250 250 | $\stackrel{\square}{-}$ | 3RB3036-1UW1 3RB3036-1WW1 | - | $\begin{aligned} & \text { 3RB3036-1UX1 } \\ & \text { 3RB3036-1WX1 } \end{aligned}$ |

Size S3 NEW
S3 Devices with screw terminals (main current side) and for mounting onto contactor ${ }^{3}$ )

$7.5 \ldots 22$	$12.5 \ldots 50$	200	$X$	3RB3046-1UBO	X	3RB3046-1UDO
$18.5 \ldots 55$	$32 \ldots 115$	315	$X$	3RB3046-1XB0	X	3RB3046-1XDO

## Devices with straight-through transformer for stand-alone

 installation$7.5 \ldots 22$
12.5... 50
200
18.5 ... 55
$32 . . .115$
315

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Maximum protection by fuse only for overload relays,
type of coordination "2"
For fuse values in connection with contactors, see Configuration Manual
[^8]
## Overload Relays

SIRIUS 3RB3 Electronic Overload Relays

## 3RB30, 3RB31 for standard applications IE3/IE4 ready

## 3RB30 electronic overload relays, CLASS 20E

Features and technical specifications:

- Connection methods
- Sizes S00 and SO:

Main and auxiliary circuit: Either screw or spring-type terminals

- Sizes S2 and S3:

Main circuit: Screw terminals with box terminal or as straight-through transformer,
Auxiliary circuit: Either screw or spring-type terminals

- Overload protection, phase failure protection and asymmetry protection
- Internal power supply
- Auxiliary contacts 1 NO + 1 NC
- Manual and automatic RESET
- Switch position indicator
- TEST function and self-monitoring
- Sealable covers (optional accessory)

PU (UNIT, SET, M) = 1

$$
\text { PS }^{*} \quad=1 \text { unit }
$$

$$
\mathrm{PG} \quad=41 \mathrm{G}
$$



Size contactor	Rated power for three-phase motors, rated value ${ }^{1)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{2 \text { 2 }}$	SD	Screw terminals	(1)	SD	Spring-type terminals	$\begin{aligned} & \infty \\ & \square \square \end{aligned}$
	kW	A	A	d	Article No.	Price per PU	d	Article No.	$\begin{array}{r} \text { Price } \\ \text { per PU } \end{array}$
Size S00									
SOO	Devices for mounting onto contactor ${ }^{3}$ )								
	$0.04 \ldots 0.09$	$0.1 \ldots 0.4$	4	$\stackrel{\rightharpoonup}{*}$	3RB3016-2RB0		2	3RB3016-2RE0	
	$0.12 \ldots 0.37$	$0.32 \ldots 1.25$	6	-	3RB3016-2NB0		2	3RB3016-2NE0	
	0.55 ... 1.5	1... 4	20	$\stackrel{\rightharpoonup}{ }$	3RB3016-2PB0		2	3RB3016-2PE0	
	$1.1 \ldots 5.5$	3... 12	25	-	3RB3016-2SB0		2	3RB3016-2SE0	
	2.2 ... 7.5	$4 \ldots 16$	25	-	3RB3016-2TB0		2	3RB3016-2TE0	
Size S0									
SO	Devices for mounting onto contactor ${ }^{3}$								
	$0.04 \ldots 0.09$	$0.1 \ldots 0.4$	4	-	3RB3026-2RB0		2	3RB3026-2RE0	
	$0.12 \ldots 0.37$	$0.32 \ldots 1.25$	6	-	3RB3026-2NB0		2	3RB3026-2NEO	
	0.55 ... 1.5	1... 4	20	-	3RB3026-2PB0		2	3RB3026-2PE0	
	1.1 ... 5.5	3... 12	25	-	3RB3026-2SB0		2	3RB3026-2SE0	
	$3 . .11$	6 ... 25	50	-	3RB3026-2QB0		2	3RB3026-2QE0	
	$5.5 \ldots 18.5$	10... 40	50	-	3RB3026-2VB0		2	3RB3026-2VE0	

## Size S2

S2 Devices with screw terminals (main current side) and for mounting onto contactor ${ }^{3}$ )

7.5... 22	12.5 ... 50	250	-	3RB3036-2UB0	-	3RB3036-2UD0
11... 37	$20 . . .80$	250	$\checkmark$	3RB3036-2WB0	-	3RB3036-2WD0
Devices with straight-through transformer for stand-alone installation						
7.5... 22	$12.5 \ldots 50$	250	$\triangleright$	3RB3036-2UW1	-	3RB3036-2UX1
11... 37	$20 . . .80$	250	-	3RB3036-2WW1	-	3RB3036-2WX1

Size S3 NEW
S3 Devices with screw terminals (main current side) and
for mounting onto contactor ${ }^{3}$ )

| $7.5 \ldots 22$ | $12.5 \ldots 50$ | 200 | $X$ | 3RB3046-2UBO | X | 3RB3046-2UDO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $18.5 \ldots 55$ | $32 \ldots 115$ | 315 | $X$ | 3RB3046-2XBO | X | 3RB3046-2XDO |

## Devices with straight-through transformer for stand-alone

 installation| 7.5... 22 | $12.5 \ldots 50$ | 200 | X | 3RB3046-2UW1 | X | 3RB3046-2UX1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18.5 ... 55 | $32 . . .115$ | 315 | X | 3RB3046-2XW1 | X | 3RB3046-2XX1 |
| alue for 4-pole standard motors at 50 Hz 400 V AC . The actual and rated data of the motor to be protected must be considered |  |  | 3) With the appropriate terminal supports (see "Accessories", page 7/100), these overload relays can also be installed as stand-alone units. |  |  |  | starting and rated data of the motor to be protected must be considered when selecting the units.

2) Maximum protection by fuse only for overload relays,
type of coordination "2"
For fuse values in connection with contactors, see Configuration Manual

## IE3/IE4 ready 3RB30, 3RB31 for standard applications

3RB31 electronic overload relays, CLASS 5E, 10E, 20E or 30E (adjustable)

Features and technical specifications:

- Connection methods
- Sizes S00 and SO:

Main and auxiliary circuit: Either screw or spring-type terminals

- Sizes S2 and S3:

Main circuit: Screw terminals with box terminal or as straight-through transformer,
Auxiliary circuit: Either screw or spring-type terminals

- Overload protection, phase failure protection and asymmetry protection
- Internal ground-fault detection (activatable)
- Internal power supply
- Auxiliary contacts 1 NO + 1 NC
- Manual and automatic RESET
- Electrical remote RESET integrated
- Switch position indicator
- TEST function and self-monitoring
- Sealable covers (optional accessory)

PU (UNIT, SET, M) = 1
$\begin{array}{ll}\mathrm{PS}^{*} & =1 \text { unit } \\ \mathrm{PG} & =41 \mathrm{G}\end{array}$


3RB3113-4TB0

Size contactor	Rated power for three-phase motors, rated value ${ }^{1)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{2)}$	SD	Screw terminals	(1)	SD	Spring-type terminals	00
	kW	A	A	d	Article No.	Price per PU	d	Article No.	Price per PU
Size S00									
SOO	Devices for mounting onto contactor3)								
	$0.04 \ldots 0.09$	$0.1 \ldots 0.4$	4	-	3RB3113-4RB0		2	3RB3113-4RE0	
	$0.12 \ldots 0.37$	$0.32 \ldots 1.25$	6	$\checkmark$	3RB3113-4NB0		2	3RB3113-4NE0	
	0.55 ... 1.5	1... 4	20	-	3RB3113-4PB0		2	3RB3113-4PE0	
	$1.1 \ldots 5.5$	3... 12	25	-	3RB3113-4SB0		2	3RB3113-4SE0	
	$2.2 \ldots . .7 .5$	4... 16	25	$\checkmark$	3RB3113-4TB0		2	3RB3113-4TE0	
Size S0									
SO	Devices for mounting onto contactor3)								
	$0.04 \ldots 0.09$	$0.1 \ldots 0.4$	4	-	3RB3123-4RB0		2	3RB3123-4RE0	
	$0.12 \ldots 0.37$	$0.32 \ldots 1.25$	6	$\checkmark$	3RB3123-4NB0		2	3RB3123-4NE0	
	$0.55 \ldots 1.5$	1... 4	20	$\checkmark$	3RB3123-4PB0		2	3RB3123-4PE0	
	$1.1 \ldots 5.5$	3... 12	25	-	3RB3123-4SB0		2	3RB3123-4SE0	
	3... 11	6 ... 25	50	$\checkmark$	3RB3123-4QB0		2	3RB3123-4QE0	
	$5.5 \ldots 18.5$	10... 40	50	-	3RB3123-4VB0		2	3RB3123-4VE0	

Size S2
S2 Devices with screw terminals (main current side) and for mounting onto contactor ${ }^{3}$ )

7.5 ... 22	12.5 ... 50	250	-	3RB3133-4UB0	-	3RB3133-4UD0
$11 . . .37$	$20 . . .80$	250	-	3RB3133-4WB0	-	3RB3133-4WD0
Devices with straight-through transformer for stand-alone installation						
7.5 ... 22	$12.5 \ldots 50$	250	-	3RB3133-4UW1	-	3RB3133-4UX1
$11 . .37$	$20 . . .80$	250	-	3RB3133-4WW1	-	3RB3133-4WX1

## Size S3 NEW

S3 Devices with screw terminals (main current side) and for mounting onto contactor ${ }^{3}$ )

| $7.5 \ldots 22$ | $12.5 \ldots 50$ | 200 | $X$ | 3RB3143-4UBO | X | 3RB3143-4UDO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $18.5 \ldots 55$ | $32 \ldots 115$ | 315 | $X$ | 3RB3143-4XBO | X | 3RB3143-4XDO |

## Devices with straight-through transformer for stand-alone

 installation| 7.5... 22 | 12.5... 50 | 200 | x | 3RB3143-4UW1 | X | 3RB3143-4UX1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18.5 .. 55 | $32 . . .115$ | 315 | X | 3RB3143-4XW1 | X | 3RB3143-4XX1 |
| alue for 4-pole standard motors at 50 Hz 400 VAC . The actual and rated data of the motor to be protected must be considered ecting the units. |  |  | 2) Maximum protection by fuse only for overload relays, type of coordination "2". <br> For fuse values in connection with contactors, see Configuration Manual <br> 3) With the appropriate terminal supports (see "Accessories" page $7 / 100$ ) |  |  |  |

Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Maximum protection by fuse only for overload relays, type of coordination "2"
3) With the values in connection with contactors, see Conigurion these overload relays can also be installed as stand-alone units.

## Overload Relays

SIRIUS 3RB3 Electronic Overload Relays

## Accessories

## Overview

The following optional accessories are available for the 3RB30/3RB31 electronic overload relays:

- Size-specific terminal support for stand-alone installation, in sizes SOO and SO also with spring-type terminals
- Mechanical RESET (for all sizes)
- Cable release for resetting devices which are difficult to access (for all sizes)
- Sealable cover (for all sizes)


## Selection and ordering data

| Version Size | SD Article No. | Price <br> per PU | PU <br> (UNIT, <br> SET, M) |
| :--- | :--- | :--- | :--- | | PS* |
| :--- |$\quad$ PG



3RU2916-3AA01


3RU2926-3AA01


3RU2936-3AA01


3RU2946-3AA01


3RU2916-3AC01


3RU2926-3AC01 Mechanical RESET


Resetting plungers, holders and formers	S00 ... S3	>	3RB3980-0A	1	1 unit	41F
Pushbuttons with extended stroke ( 12 mm ), IP65, $\varnothing 22 \mathrm{~mm}$	S00 ... S3	-	3SU1200-0FB10-0AA0	1	1 unit	41J
Extension plungers	S00 ... S3	-	3SU1900-0KG10-0AA0	1	1 unit	41J

3RB3980-0A with pushbutton and extension plungers

## Terminal supports for overload relays with

 screw terminalsFor separate mounting of the overload relays screw and snap-on mounting onto standard mounting rail

	S3	NEW 1	3RU2946-3AA01		1	1 unit	41F
Terminal supports for overload relays with spring-type terminals			Spring-type terminals	$\begin{aligned} & 00 \\ & \square \end{aligned}$			
For separate mounting of the overload relays;	S00	5	3RU2916-3AC01		1	1 unit	41F


| screw and snap-on mounting onto standard mounting SO | 5 | 3RU2926-3AC01 | 1 unit |
| :--- | :--- | :--- | :--- | rail


Screw terminals	$\ddots$			
3RU2916-3AA01		1	1 unit	$41 F$
3RU2926-3AA01		1	1 unit	$41 F$
3RU2936-3AA01		1	1 unit	$41 F$
3RU2946-3AA01	0	1	1 unit	$41 F$
Spring-type terminals	$\square$			
		1	1 unit	$41 F$
3RU2916-3AC01		1	1 unit	$41 F$
3RU2926-3AC01				

d


## General accessories

	Version	Size	Color	For overload relays	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
					d					
Tools for ope	spring-type termi	nals								
	Screwdrivers   For all SIRIUS devices with spring-type terminals	Length, approx. 200 mm , $3.0 \mathrm{~mm} \times 0.5 \mathrm{~mm}$	Titanium gray/ black, partially insulated	Main and auxiliary circuit connection: 3RB3	2	Spring-type terminals   3RA2908-1A	$\begin{aligned} & \infty \\ & \square \end{aligned}$	1	1 unit	41B
Blank labels										
	Unit labeling plates ${ }^{1)}$ For SIRIUS devices	$20 \mathrm{~mm} \times 7 \mathrm{~mm}$	Pastel turquoise	3RB3	20	3RT1900-1SB20		100	340 units	41B
		$20 \mathrm{~mm} \times 7 \mathrm{~mm}$	Titanium gray	3RB3	20	3RT2900-1SB20		100	340 units	41B
	Adhesive inscription labels ${ }^{1 \text { 1 }}$	$19 \mathrm{~mm} \times 6 \mathrm{~mm}$	Pastel turquoise	3RU2	15	3RT1900-1SB60		100	3060 units	41B
	For SIRIUS devices	$19 \mathrm{~mm} \times 6 \mathrm{~mm}$	Zinc yellow	3RU2	15	3RT1900-1SD60		100	3060 units	41B
$\bigcirc 0^{\circ} 0^{\circ} 0^{\circ}$										

1) PC labeling system for individual inscription of unit labeling plates available from:
murrplastik Systemtechnik GmbH
(see page 16/20).

## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays

## 3RB20, 3RB21 for standard applications

## Overview

## More information

Home page, see http://www.siemens.com/sirius-overloadrelays Industry Mall, see www.siemens.com/product?3RB2

Application Manual "SIRIUS Controls with IE3/IE4 Motors", see https://support.industry.siemens.com/cs/ww/en/view/94770820
Manual "SIRIUS - SIRIUS 3RU Thermal Overload Relays / SIRIUS 3RB Electronic Overload Relays", see
https://support.industry.siemens.com/cs/ww/en/view/60298164
Characteristics and certificates, see
https://support.industry.siemens.com/cs/ww/en/ps/16278


Mountable accessories for 3RB2 electronic overload relays (sizes S6 to S10/S12)

# Overload Relays SIRIUS 3RB2 Electronic Overload Relays 

## 3RB20, 3RB21 for standard applications


(1) Switch position indicator and TEST function of the wiring: Indicates a trip and enables the wiring test.
(2) Trip class setting/internal ground-fault detection (only 3RB21): Using the rotary switch you can set the required trip class and activate the internal ground-fault detection dependent on the start-up conditions.
(3) Solid-state test (device test): Enables a test of all important device components and functions.
(4) Connecting terminals (removable terminal block for auxiliary circuits): The generously sized terminals permit connection of two conductors with different cross-sections for the main and auxiliary circuits. The auxiliary circuit can be connected with screw terminals and alternatively with spring-type terminals.
(5) Selector switch for manual/automatic RESET: With the slide switch you can choose between manual and automatic RESET.
(6) Motor current setting:

Setting the device to the rated motor current is easy with the large rotary knob.
(7) A device set to manual RESET can be reset locally by pressing the RESET button. On the 3RB21 overload relay a solid-state remote RESET is integrated.
(8) Connection for mounting onto contactors: Optimally adapted in electrical, mechanical and design terms to the contactors 3RT1. These connecting pins can be used for direc mounting of the overload relay to the contactor. Stand-alone installation is possible as an alternative (partly in conjunction with a terminal bracket for stand-alone installation).

SIRIUS 3RB2153-4FW2 electronic overload relay

The 3RB20 and 3RB21 electronic overload relays up to 630 A with internal power supply have been designed for currentdependent protection of loads with normal and heavy starting (see Manual) against excessive temperature rises due to overload, phase asymmetry or phase failure.
An overload, phase asymmetry or phase failure result in an increase of the motor current beyond the set rated motor current. This current rise is detected by the current transformers integrated into the devices and evaluated by corresponding solidstate circuits which then output a pulse to the auxiliary contacts. The auxiliary contacts then switch off the load by means of a contactor. The break time depends on the ratio between the tripping current and the current setting $I_{\mathrm{e}}$ and is stored in the form of a long-term stable tripping characteristic curve see Characteristic curves.

In addition to inverse-time delayed protection of loads against excessive temperature rises due to overload, phase asymmetry and phase failure, the 3RB21 electronic overload relays also allow internal ground-fault detection (not possible in conjunction with contactor assemblies for star-delta (wye-delta) starting). This provides protection of loads against high-resistance short circuits due to damage to the insulation material, moisture, condensed water etc.

The "tripped" status is signaled by means of a switch position indicator. The relay is reset manually or automatically after the recovery time has elapsed
The 3RB2 electronic overload relays are suitable for operation with frequency converters, see Manual.

The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials. They comply with all important worldwide standards and approvals.
For 3RB30 and 3RB31 overload relay sizes S00 to S3, see page 7/97 onwards

## Use in hazardous areas

The 3RB20/3RB21 electronic overload relays are suitable for the overload protection of motors with the following types of protection:

- Exx II (2) G [Ex e] [Ex d] [Ex px]
- $\varepsilon_{x}\| \|(2) D[E x t][E x p]$

EC type test certificate for Group II, Category (2) G/D exists. It has the number PTB 06 ATEX 3001.

Overload Relays
SIRIUS 3RB2 Electronic Overload Relays
3RB20, 3RB21 for standard applications

## Article No. scheme



## Note:

The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders please use the article numbers quoted in the selection and ordering data.

## Benefits

The most important features and benefits of the 3RB20/3RB21 electronic overload relays are listed in the overview table (see "General Data", page 7/71 onwards)

## Application

## Industries

The 3RB20 and 3RB21 electronic overload relays are suitable for customers from all industries who want to guarantee optimum inverse-time delayed protection of their electrical loads (e.g. motors) under normal and heavy starting conditions (CLASS 5E to 30E), minimize project completion times, inventories and energy consumption, and optimize plant availability and maintenance management

## Application

The 3RB20 and 3RB21 electronic overload relays have been designed for the protection of three-phase motors in sinusoidal $50 / 60 \mathrm{~Hz}$ voltage networks. The relays are not suitable for the protection of single-phase AC or DC loads.
The 3RU21 thermal overload relays or the 3RB22 to 3RB24 electronic overload relays can be used for single-phase AC loads. For DC loads we recommend the 3RU21 thermal overload relay.

## Ambient conditions

The devices are insensitive to external influences such as shocks, corrosive ambient conditions, ageing and temperature fluctuations.

For the temperature range from -25 C to $+60^{\circ} \mathrm{C}$, the 3 RB 20 and 3RB21 electronic overload relays compensate the temperature in accordance with IEC 60947-4-1.

For the 3RB20 and 3RB21 electronic overload relays with the sizes S6, S10 and S12, the upper set value of the setting range must be reduced for ambient temperatures $>50^{\circ} \mathrm{C}$ by a certain factor.

## Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

Note:
For the use of 3RB20 and 3RB21 electronic overload relays in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.
For more information, see Preface on page 7.

## Technical specifications

More information
Configuration Manual "Configuring SIRIUS Innovations - Selection Data for
Fuseless and Fused Load Feeders", see
https://support.industry.siemens.com/cs/ww/en/view/39714188
Manual "SIRIUS - SIRIUS 3RU Thermal Overload Relays /
SIRIUS 3RB Electronic Overload Relays",
https://support.industry.siemens.com/cs/ww/en/view/60298164

## Technical specifications, see

https://support.industry.siemens.com/cs/ww/en/ps/16278

The following technical information is intended to provide an initial overview of the various types of device and functions.


Sraight-through transformers
IP20

1) $90 \%$ for relay with current setting range 160 A to 630 A .

Overload Relays
SIRIUS 3RB2 Electronic Overload Relays

## 3RB20, 3RB21 for standard applications




Overload Relays
SIRIUS 3RB2 Electronic Overload Relays

## 3RB20, 3RB21 for standard applications



1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified

## Selection and ordering data

3RB20 electronic overload relays for mounting onto contactors and stand-alone installation, CLASS 10E
Features and technical specifications:

- Connection methods
- Size S6

Main circuit: With busbar connection or as straight-through transformer,
Auxiliary circuit: Either screw or spring-type terminals

- Sizes S10/S12:

Main circuit: With busbar connection,
Auxiliary circuit: Either screw or spring-type terminals

- Overload protection, phase failure protection and asymmetry protection
- Internal power supply


3RB2056-1FW2


3RB2066-1MF2

- Auxiliary contacts 1 NO + 1 NC
- Manual and automatic RESET
- Switch position indicator
- TEST function and self-monitoring

PU (UNIT, SET, M) = 1

$\mathrm{PS}^{*}$	$=1$ unit
PG	$=41 \mathrm{G}$


Size contactor	Rated power for three-phase motors, rated value ${ }^{1)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{2)}$	SD	Screw terminals (on auxiliary current side)	$(3)$	SD	Spring-type terminals (on auxiliary current side)	$00$
	kW	A	A	d	Article No.	Price per PU	d	Article No.	Price per PU

Devices with busbar connection
for mounting onto contactor and stand-alone installation
S6 $22 \ldots 90 \quad 50 \ldots 200 \quad 315$

Devices with straight-through transformer
for mounting onto contactor and stand-alone installation

For mounting onto S6 contactors with box terminals	$22 . .90$	$50 \ldots 200$	315	-	3RB2056-1FW2	-	3RB2056-1FX2
Size S10/S12							
Devices with busbar connection for mounting onto contactor and stand-alone installation							
$\begin{aligned} & \text { S10/S12 } \\ & \text { and size } 14 \\ & \text { (3TF68/ } \\ & \text { 3TF69) } \end{aligned}$	$\begin{aligned} & 22 \ldots 110 \\ & 90 \ldots 450 \end{aligned}$	$\begin{aligned} & 55 \ldots 250 \\ & 160 \ldots 630 \end{aligned}$	400 800	-	3RB2066-1GC2 3RB2066-1MC2	$\bigcirc$	3RB2066-1GF2   3RB2066-1MF2

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC . The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Maximum protection by fuse only for overload relays, type of coordination "2". For fuse values in connection with contactors, see Configuration Manual.
${ }^{3)}$ For 3TF68/3TF69 contactors, direct mounting is not possible.

## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays

## 3RB20, 3RB21 for standard applications IE3/IE4 ready

3RB20 electronic overload relays for mounting onto contactors and stand-alone installation, CLASS 20E
Features and technical specifications:

- Connection methods
- Size S6

Main circuit: With busbar connection or as straight-through transformer,
Auxiliary circuit: Either screw or spring-type terminals

- Sizes S10/S12:

Main circuit: With busbar connection,
Auxiliary circuit: Either screw or spring-type terminals

- Overload protection, phase failure protection and asymmetry protection
- Internal power supply


3RB2056-1FW2


3RB2066-1MF2

- Auxiliary contacts $1 \mathrm{NO}+1 \mathrm{NC}$
- Manual and automatic RESET
- Switch position indicator
- TEST function and self-monitoring

PU (UNIT, SET, M) = 1
PS* = 1 unit
$\mathrm{PG} \quad=41 \mathrm{G}$
Size contactor Rated power for

Size contactor	Rated power for   three-phase motors,   rated value 1)	Current setting value   of the inverse-time   delayed overload   release	Short-circuit   protection with fuse,   type of coordina-
tion "2", operational			
class gG ${ }^{2}$ )			


SDScrew terminals   (on auxiliary current   side)	$\ddots$ SDSpring-type   terminals   (on auxiliary current   side)	OO	
	Article No.	Price   per PU	Article No.

## Size S6

Devices with busbar connection
for mounting onto contactor and stand-alone installation
S6 $22 \ldots 90 \quad 50 \ldots 200 \quad 315$

## Devices with straight-through transformer

for mounting onto contactor and stand-alone installation

For mounting $22 \ldots 90$   onto S6 con-   tactors with   box terminals	$50 \ldots 200$	315	3RB2056-2FW2	3RB2056-2FX2
Size S10/S12				

## Devices with busbar connection

 for mounting onto contactor and stand-alone installation| S10/S12 | $22 \ldots 110$ | $55 \ldots 20$ | 400 | $>$ | 3RB2066-2GC2 | $>$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| and size 14 $90 \ldots 450$ $160 \ldots 630$ 800 |  |  | 3RB2066-2GF2 |  |  |  |
| (3TF68/3) |  |  |  |  | 3RB2066-2MC2 |  |

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Maximum protection by fuse only for overload relays, type of coordination "2". For fuse values in connection with contactors, see Configuration Manual.
3) For 3TF68/3TF69 contactors, direct mounting is not possible.

## IE3/IE4 ready 3RB20, 3RB21 for standard applications

3RB21 electronic overload relays for mounting onto contactors and stand-alone installation, CLASS 5E, 10E, 20E and 30E adjustable
Features and technical specifications:

- Connection methods
- Size S6

Main circuit: With busbar connection or as straight-through transformer,
Auxiliary circuit: Either screw or spring-type terminals

- Sizes S10/S12:

Main circuit: With busbar connection,
Auxiliary circuit: Either screw or spring-type terminals

- Overload protection, phase failure protection and asymmetry protection
- Internal ground-fault detection (activatable)
- Internal power supply
- Auxiliary contacts 1 NO + 1 NC
- Manual and automatic RESET
- Electrical remote RESET integrated
- Switch position indicator
- TEST function and self-monitoring

PU (UNIT, SET, M) $=1$
PS* $=1$ unit
PG $\quad=41 \mathrm{G}$


3RB2153-4FX2


3RB2163-4MC2

Size contactor	Rated power for three-phase motors, rated value ${ }^{1)}$	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{2)}$	SD	Screw ter (on auxilia side)	(1)	SD	Spring-type terminals (on auxiliary current side)	$0$
	kW	A	A	d	Article No.	Price per PU	d	Article No.	Price per PU

Devices with busbar connection
for mounting onto contactor and stand-alone installation


## Devices with straight-through transformer

for mounting onto contactor and stand-alone installation

For mounting $22 \ldots 90$   onto S6 con-   tactors with   box terminals
Size S10/S12 ${ }^{2}$ 3RB2153-4FW2

## Devices with busbar connection

 for mounting onto contactor and stand-alone installation| S10/S12 | $22 \ldots 110$ | $55 \ldots 250$ | 400 | $>$ | 3RB2163-4GC2 |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad$| 3RB2163-4GF2 |
| :--- |
| and size 14 |
| (3TF68/ |
| 3TF69) |

1) Guide value for 4 -pole standard motors at 50 Hz 400 V AC. The actual starting and rated data of the motor to be protected must be considered when selecting the units.
2) Maximum protection by fuse only for overload relays, type of coordination "2". For fuse values in connection with contactors, see Configuration Manual.
${ }^{3)}$ For 3TF68/3TF69 contactors, direct mounting is not possible.

## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays

## Accessories for 3RB20, 3RB21

## Overview

## Overload relays for standard applications

The following optional accessories are available for the 3RB20 and 3RB21 electronic overload relays:

- Mechanical RESET (for all sizes)
- Cable release for resetting devices which are difficult to access (for all sizes)
- Sealable cover (for all sizes)
- Terminal covers for sizes S6 to S10/S12
- Box terminal blocks for sizes S6 and S10/S12

Selection and ordering data


[^9]
## General accessories



1) PC labeling system for individual inscription
of unit labeling plates available from:
murrplastik Systemtechnik GmbH
(see page 16/20).

3RB22, 3RB23 for high-feature applications

## Overview

## More information

Home page, see http://www.siemens.com/sirius-overloadrelays Industry Mall, see www.siemens.com/product?3RB2

(1) 3RB2985 function expansion module: Enables more functions to be added, e.g. internal ground-fault detection and/or an analog output with corresponding signals.
(2) Motor current and trip class setting: Setting the device to the motor current and to the required trip class dependent on the start-up conditions is easy with the two rotary switches.
(3) Connecting terminals (removable joint block): The generously sized terminals permit connection of two conductors with different cross-sections for the auxiliary, control and sensor circuits. Connection is possible with screw connection and alternatively with spring-type connection.
4) Test/RESET button

Enables testing of all important device components and functions, plus resetting of the device after a trip when manual RESET is selected.
(5) Selector switch for manual/automatic RESET:

With this switch you can choose between manual and automatic RESET.
(6) Red LED "OVERLOAD":

A continuous red light signals an active overload trip; a flickering red light signals an imminent trip (overload warning).
(7) Red LED "THERMISTOR":

A continuous red light signals an active thermistor trip.
(8) Red LED "GND FAULT";

A continuous red light signals a ground-fault tripping.
(9) Green LED "READY":

A continuous green light signals that the device is working correctly.

## SIRIUS 3RB22 and 3RB23 evaluation modules

The 3RB22 and 3RB23 electronic overload relays up to 630 A (up to 820 A possible in combination with a series transformer) are from a modular system and comprise an evaluation unit, a current measuring module and a connecting cable. The 3RB22 overload relays (with monostable auxiliary contacts) and the 3RB23 overload relays (with bistable auxiliary contacts) are supplied from an external voltage.
They have been designed for inverse-time delayed protection of loads with normal and heavy starting against excessive temperature rises due to overload, phase asymmetry or phase failure. An overload, phase asymmetry or phase failure result in an increase of the motor current beyond the set rated motor current.

Application Manual "SIRIUS Controls with IE3/IE4 Motors", see
https://support.industry.siemens.com/cs/ww/en/view/94770820
Operating Instructions "3RB22, 3RB23 Electronic Overload Relays", see
https://support.industry.siemens.com/cs/ww/en/view/21833251
Characteristics and certificates, see
https://support.industry.siemens.com/cs/ww/en/ps/16280
This current rise is detected by means of a current measuring module (see page $7 / 132$ ) and electronically evaluated by the evaluation module which is connected to it. The evaluation electronics sends a signal to the auxiliary contacts. The auxiliary contacts then switch off the load by means of a contactor.

The break time depends on the ratio between the tripping current and current setting $I_{\mathrm{e}}$ and is stored in the form of a longterm stable tripping characteristic curve (see Characteristic Curves). The "tripped" status is signaled by means of a continuous red "OVERLOAD" LED
The LED indicates imminent tripping of the relay due to overload, phase asymmetry or phase failure by flickering when the limit current has been violated. In the case of the 3RB22 and 3RB23 overload relays this warning can also be issued through auxiliary contacts.

In addition to the described inverse-time delayed protection of loads against excessive temperature rises, the 3RB22 and 3RB23 electronic overload relays also allow direct temperature monitoring of the motor windings (full motor protection) by connection with broken-wire interlock of a PTC sensor circuit. With this temperature-dependent protection, the loads can be protected against overheating caused, for example, indirectly by reduced coolant flow and which cannot be detected by means of the current alone. In the event of overheating, the devices switch off the contactor, and thus the load, by means of the auxiliary contacts. The "tripped" status is signaled by means of a continuously illuminated "THERMISTOR" LED.
To protect the loads against high-resistance short circuits due to damage to the insulation, humidity, condensed water, etc., the 3RB22 and 3RB23 electronic overload relays offer the possibility of internal ground fault monitoring in conjunction with a function expansion module (for details, see Operating Instructions, not possible in conjunction with contactor assemblies for start-delta (wye-delta) starting). In the event of a ground fault the 3RB22 and 3RB23 relays trip instantaneously.

The "tripped" status is signaled by means of a continuous red "Ground Fault" LED. Signaling through auxiliary contacts is also possible.

After tripping due to overload, phase asymmetry, phase failure, thermistor or ground-fault tripping, the relay is reset manually or automatically after the recovery time has elapsed.
In conjunction with a function expansion module, the motor current measured by the microprocessor can be output in the form of a DC 4 mA to 20 mA analog signal for operating rotary coil instruments or for feeding into analog inputs of programmable logic controllers.

With an additional AS-Interface analog module the current values can also be transferred over the AS-i bus system.
The 3RB2 electronic overload relays are suitable for operation with frequency converters.

The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials. They comply with all important worldwide standards and approvals.

## Use in hazardous areas

The 3RB22 electronic overload relays (monostable) with the 3RB29 current measuring module are suitable for the overload protection of explosion-proof motors.

EC type test certificate for category (2) G/D exists. It has the number PTB 05 ATEX 3022.

Article No. scheme


Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

## Benefits

The most important features and benefits of the 3RB22 and 3RB23 electronic overload relays are listed in the overview table, (see "General Data", page 7/71 onwards).

## Advantages through energy efficiency



## Overview of the energy management process

We offer you a unique portfolio for industrial energy management, using an energy management system that helps to optimally define your energy needs. We split up our industrial energy management into three phases - identify, evaluate, and realize - and we support you with the appropriate hardware and software solutions in every process phase.

The innovative products of the SIRIUS industrial controls portfolio can also make a substantial contribution to a plant's energy efficiency, see www.siemens.com/sirius/energysaving.

3RB22 and 3RB23 electronic overload relays contribute to energy efficiency throughout the plant as follows:

- Reduced inherent power loss
- Less heating of the control cabinet
- Smaller control cabinet air conditioners can be used

For your orders please use the article numbers quoted in the selection and ordering data.

## Application

## Industries

The 3RB22/3RB23 electronic overload relays are suitable for customers from all industries who want to guarantee optimum inverse-time delayed and temperature-dependent protection of their electrical loads (e. g. motors) under normal and heavy starting conditions (CLASS 5 to CLASS 30), minimize project completion times, inventories and power consumption, and optimize plant availability and maintenance management.

## Application

The 3RB22 and 3RB23 devices have been designed for the protection of three-phase asynchronous and single-phase AC motors.

If single-phase AC motors are to be protected by the 3RB22 and 3RB23 electronic overload relays, the main current paths of the current measuring modules must be series-connected. For circuit diagrams see Operating Instructions.

## Ambient conditions

The devices are insensitive to external influences such as shocks, corrosive ambient conditions, ageing and temperature fluctuations.
For the temperature range from $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, the 3 RB22 and 3RB23 electronic overload relays compensate the temperature in accordance with IEC 60947-4-1.
Configuration notes for use of the devices below $-25^{\circ} \mathrm{C}$ or above $+60^{\circ} \mathrm{C}$ on request.

## Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

## Note:

For the use of 3RB22 and 3RB23 electronic overload relays in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.

For more information, see Preface on page 7.

## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays
3RB22, 3RB23 for high-feature applications

## Technical specifications

More information
Application Manual "SIRIUS Controls with IE3/IE4 Motors", see
https://support.industry.siemens.com/cs/ww/en/view/94770820
Configuration Manual "Configuring SIRIUS Innovations - Selection Data for
Fuseless and Fused Load Feeders", see
https://support.industry.siemens.com/cs/ww/en/view/39714188

[^10]https://support.industry.siemens.com/cs/ww/en/ps/16280/td

The following technical information is intended to provide an initial overview of the various types of device and functions.

| Type - Overload relay: evaluation modules |
| :--- | :--- | :--- |
| Size contactor |
| Dimensions of evaluation modules |
| (W $\times \mathrm{H} \times \mathrm{D}$ ) |



Type - Overload relay: evaluation modules	
Size contactor	
3RB2283-4A.1, 3RB2383-4A.1	
Number of NO contacts	
Number of NC contacts	2
Number of CO contacts	2
Auxiliary contacts - assignment	--

[^11]
## Overload Relays <br> SIRIUS 3RB2 Electronic Overload Relays

## 3RB22, 3RB23 for high-feature applications


${ }^{2)}$ Analog input modules, e.g. SM 331, must be configured for 4 -wire measuring transducers. In this case the analog input module must not supply current to the analog output of the 3RB22 and 3RB23 relay.

Functions of the 3RB22 and 3RB23 evaluation modules in combination with the 3RB2985 function expansion modules

Evaluation modules	With function expansion module	Basic functions	Inputs   A1/A2	T1/T2	Y1/Y2
$\begin{aligned} & \text { 3RB2283-4AA1 } \\ & \text { 3RB2283-4AC1 } \\ & \text { 3RB2383-4AA1 } \end{aligned}$	--	Inverse-time delayed protection, temperature-dependent protection, electrical remote RESET, overload warning	Power supply 24 ... 240 V AC/DC	Connection PTC sensor	Electrical remote RESET
3RB2383-4AC1	3RB2985-2CA1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, overload warning	Power supply   24 ... 240 V AC/DC	Connection PTC sensor	Electrical remote RESET
	3RB2985-2CB1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, ground-fault signal	Power supply   24 ... 240 V AC/DC	Connection PTC sensor	Electrical remote RESET
	3RB2985-2AA0	Inverse-time delayed protection, temperature-dependent protection, electrical remote RESET, overload warning, analog output	Power supply   24 ... 240 V AC/DC	Connection PTC sensor	Electrical remote RESET
	3RB2985-2AA1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, overload warning, analog output	Power supply   24 ... 240 V AC/DC	Connection PTC sensor	Electrical remote RESET
	3RB2985-2AB1	Inverse-time delayed protection, temperature-dependent protection, internal ground-fault detection, electrical remote RESET, ground-fault signal, analog output	Power supply   24 ... 240 V AC/DC	Connection PTC sensor	Electrical remote RESET


Evaluation modules	With function expansion module	Outputs $1(-) / 1(+)$	95/96 NC	97/98 NO	05/06 NC	07/08 NO
$\begin{aligned} & \text { 3RB2283-4AA1 } \\ & \text { 3RB2283-4AC1 } \\ & \text { 3RB2383-4AA1 } \end{aligned}$	--	No	Disconnection of the contactor (inverse-time delayed/temperaturedependent protection)	Signal "tripped"	Overload warning	Overload warning
3RB2383-4AC1	3RB2985-2CA1	No	Disconnection of the contactor (inverse-time delayed/temperaturedependent protection + ground fault)	Signal "tripped"	Overload warning	Overload warning
	3RB2985-2CB1	No	Disconnection of the contactor (inverse-time delayed/temperaturedependent protection)	Signal "tripped"	Disconnection of the contactor (ground fault)	Signal "ground-fault tripping"
	3RB2985-2AAO	Analog signal	Disconnection of the contactor (inverse-time delayed/temperaturedependent protection)	Signal "tripped"	Overload warning	Overload warning
	3RB2985-2AA1	Analog signal	Disconnection of the contactor (inverse-time delayed/temperaturedependent protection + ground fault)	Signal "tripped"	Overload warning	Overload warning
	3RB2985-2AB1	Analog signal	Disconnection of the contactor (inverse-time delayed/temperaturedependent protection)	Signal "tripped"	Disconnection of the contactor (ground fault)	Signal "ground-fault tripping"

## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays

## 3RB22, 3RB23 for high-feature applications IE3/IE4 ready

3RB22 and 3RB23 electronic overload relays (evaluation modules) for full motor protection, stand-alone installation, CLASS 5E, 10E, 20E and 30E (adjustable)

Type	3RB2283-4A.1, 3RB2383-4A. 1
Features and technical specifications	
Overload protection, phase failure protection and asymmetry protection	$\checkmark$
Supplied from an external source	24 ... $240 \mathrm{~V} \mathrm{AC/DC}$
Auxiliary contacts	$\stackrel{\checkmark}{2} \mathrm{NO}+2 \mathrm{NC}$
Electrical remote RESET integrated	$\checkmark$
Four LEDs for operating and status displays	$\checkmark$
TEST function and self-monitoring	$\checkmark$
Internal ground-fault detection	(with function expansion module)
Screw or spring-type terminals for auxiliary, control and sensor circuits	$\checkmark$
Input for PTC sensor circuit	$\checkmark$
Analog output	(with function expansion module)

## Selection and ordering data

```
PU (UNIT, SET, M) = 1
PS* = 1 unit
PG =41G
```




Notes:
Overview of overload relays - matching contactors, see page 7/76.

Function expansion modules for 3RB22 and 3RB23 overload relays (evaluation modules)

| Size <br> contactor | Version | For <br> overload <br> relays | SD |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Sizes S00 to S12



3RB2985-2. 1

S00 ... S12	For plugging into evaluation module (1 unit)						
	Analog Basic 1 modules ${ }^{1)}$ Analog output 4 ... 20 mADC , with overload warning	$\begin{aligned} & \text { 3RB22, } \\ & \text { 3RB23 } \end{aligned}$	-	3RB2985-2AA0	1	1 unit	41F
	Analog Basic 1 GF modules ${ }^{112)}$   Analog output 4 ... 20 mA DC, with internal ground-fault detection and overload warning	$\begin{aligned} & \text { 3RB22, } \\ & \text { 3RB23 } \end{aligned}$	-	3RB2985-2AA1	1	1 unit	41F
	Analog Basic 2 GF modules ${ }^{1 / 2)}$   Analog output 4 ... 20 mA DC, with internal ground-fault detection and ground-fault signal	$\begin{aligned} & \text { 3RB22, } \\ & \text { 3RB23 } \end{aligned}$	-	3RB2985-2AB1	1	1 unit	41F
	Basic 1 GF modules ${ }^{2)}$   with internal ground-fault detection and overload warning	$\begin{aligned} & \hline \text { 3RB22, } \\ & \text { 3RB23 } \end{aligned}$	-	3RB2985-2CA1	1	1 unit	41F
	Basic 2 GF modules ${ }^{2)}$   with internal ground-fault detection and ground-fault signal	$\begin{aligned} & \text { 3RB22, } \\ & \text { 3RB23 } \end{aligned}$	-	3RB2985-2CB1	1	1 unit	41F

1) The analog signal 4 mA up to 20 mA DC can be used for operating rotary coil instruments or for feeding into analog inputs of programmable logic controllers.
2) The following information on ground-fault protection refers to sinusoidal residual currents at $50 / 60 \mathrm{~Hz}$ :

- With a motor current of between 0.3 and 2 times the current setting $I_{\mathrm{e}}$ the unit will trip at a ground-fault current equal to $30 \%$ of the current setting
- With a motor current of between 2 and 8 times the current setting $I_{\mathrm{e}}$ the unit will trip at a ground-fault current equal to $15 \%$ of the current setting
The response delay amounts to between 0.5 s and 1 s .

Note:
Analog input modules, e.g. SM 331, must be configured for 4 -wire measuring transducers. In this case the analog input module must not supply current to the analog output of the 3RB22/3RB23 relay.

## Overview

## More information

Home page, see http://www.siemens.com/sirius-overloadrelays Industry Mall, see www.siemens.com/product?3RB2

(1) Plug-in point for operator panel: enables connection of the 3RA6935-0A operator panel.
(2) Motor current and trip class setting: Setting the device to the motor current and to the required trip class dependent on the start-up conditions is easy with the two rotary switches.
(3) Connecting terminals (removable terminal block): The generously sized terminals permit connection of two conductors with different cross-sections for the auxiliary, control and sensor circuits. Connection is possible with screw connection and alternatively with spring-type connection.
(4) Test/RESET button: Enables testing of all important device components and functions, plus resetting of the device after a trip when manual RESET is selected.
(5) Selector switch for manual/automatic RESET:

With this switch you can choose between manual and automatic RESET.
(6) Red LED "OVERLOAD":

A continuous red light signals an active overload trip; a flickering led light signals an imminent trip (overload warning).
(7) Red LED "THERMISTOR":

A continuous red light signals an active thermistor trip.
(8) Red LED "GND FAULT":

A continuous red light signals an active ground-fault trip.
(9) Green LED "DEVICE/IO-Link:

A continuous green light signals that the device is working correctly, a green flickering light signals the communication through IO-Link.

## SIRIUS 3RB24 evaluation module

The modular, IO-Link powered 3RB24 electronic overload relays (with monostable auxiliary contacts) up to 630 A (up to 820 A possible with a series transformer) have been designed for current-dependent protection of loads with normal and heavy starting against excessive temperature rises due to overload, phase asymmetry or phase failure. It comprises an evaluation unit, a current measuring module and a connecting cable.
The evaluation module 3RB24 also offers an engine starter function: The contactors, which are connected via the auxiliary contacts, can also be actuated for operation via IO-Link. In this way, direct-on-line, reversing and wye-delta starters up to 630 A (or 830 A ) can be connected to the controller wirelessly via the IO-Link controller.

Application Manual "SIRIUS Controls with IE3/IE4 Motors", see
https://support.industry.siemens.com/cs/ww/en/view/94770820
Manual "SIRIUS 3RB24 Electronic Overload Relay for IO-Link", see https://support.industry.siemens.com/cs/ww/en/view/46165627
Certificates, see https://support.industry.siemens.com/cs/ww/en/ps/16281/cert
An overload, phase asymmetry or phase failure result in an increase of the motor current beyond the set rated motor current.
This current rise is detected by means of the current measuring module (see page 7/132) and electronically evaluated by the evaluation module which is connected to it. The evaluation electronics sends a signal to the auxiliary contacts. The auxiliary contacts then switch off the load by means of a contactor.
The break time depends on the ratio between the tripping current and current setting $I_{\mathrm{e}}$ and is stored in the form of a long-term stable tripping characteristic curve (see Manual). The "tripped" status is signaled by means of a continuously illuminated red "OVERLOAD" LED and also reported as a group fault via IO-Link.
The LED indicates imminent tripping of the relay due to overload, phase asymmetry or phase failure by flickering when the limit current has been violated. This warning can also be reported to the higher-level PLC via IO-Link at the 3RB24 overload relay.
In addition to the described inverse-time delayed protection of loads against excessive temperature rises, the 3RB24 electronic overload relays also allow direct temperature monitoring of the motor windings (full motor protection) by connection with broken-wire interlock of a PTC sensor circuit. With this tempera-ture-dependent protection, the loads can be protected against overheating caused, for example, indirectly by reduced coolant flow and which cannot be detected by means of the current alone. In the event of overheating, the devices switch off the contactor, and thus the load, by means of the auxiliary contacts. The "tripped" status is signaled by means of a continuously illuminated "THERMISTOR" LED and also reported as a group fault via IO-Link.

To protect the loads against incomplete ground faults due to damage to the insulation, humidity, condensation, etc., the 3RB24 electronic overload relays offer the possibility of internal ground-fault detection (for details, see Manual, not possible in conjunction with contactor assemblies for star-delta (wye-delta) starting). In the event of a ground fault, the 3RB24 relays trip instantaneously.
The "tripped" status is signaled by means of a flashing red LED "Ground Fault" and reported at the overload relay 3RB24 as a group fault via IO-Link.
The reset after overload, phase asymmetry, phase failure, thermistor or ground-fault tripping is performed manually by key on site, via IO-Link or by electrical remote RESET or automatically after the cooling time (motor model) or for thermistor protection after sufficient cooling. Trips in devices initiated by function monitoring systems (broken wire or short-circuit on the thermistor) can only be reset locally.
A motor current measured by the microprocessor can be output in the form of an analog signal DC 4 mA to 20 mA for operating rotary coil instruments or for feeding into analog inputs of programmable logic controllers.

## 3RB24 for IO-Link for high-feature applications

The current values can be transmitted to the higher-leve controller via IO-Link.

The 3RB24 electronic overload relay for IO-Link is suitable for operation with frequency converters.

The devices are manufactured in accordance with environmental guidelines and contain environmentally friendly and reusable materials. They comply with all important worldwide standards and approvals.

## Use in hazardous areas

The 3RB24 electronic overload relays for IO-Link with the 3RB29 current measuring module are suitable for the overload protection of motors with the following types of protection:

- $\left.\varepsilon_{x}\right) I I(2) G[E x ~ e][E x d][E x p x]$
- Ex II (2) D [Ex t] [Ex p]

EC type test certificate for Group II, Category (2) G/D exists. It has the number PTB 11 ATEX 3014.

## Article No. scheme



Note:
The Article No. scheme shows an overview of product versions for better understanding of the logic behind the article numbers.

For your orders please use the article numbers quoted in the selection and ordering data.

## Benefits

The most important features and benefits of the 3RB24 electronic overload relays for IO-Link are listed in the overview table (see "General Data", page 7/71 onwards).

## Advantages through energy efficiency



Overview of the energy management process

We offer you a unique portfolio for industrial energy management, using an energy management system that helps to optimally define your energy needs. We split up our industrial energy management into three phases - identify, evaluate, and realize - and we support you with the appropriate hardware and software solutions in every process phase.
The innovative products of the SIRIUS industrial controls portfolio can also make a substantial contribution to a plant's energy efficiency (see www.siemens.com/sirius/energysaving)
3RB24 electronic overload relays for IO-Link contribute to energy efficiency throughout the plant as follows:

- Transmission of current values
- Reduced inherent power loss
- Less heating of the control cabinet
- Smaller control cabinet air conditioners can be used


## Application

## Industries

The 3RB24 electronic overload relays are suitable for customers from all industries who want to guarantee optimum current and temperature-dependent protection of their electrical loads (e.g. motors) under normal and heavy starting conditions (CLASS 5E to 30E), minimize project completion times, inventories and energy consumption, and optimize plant availability and maintenance management.

## Application

The 3RB24 electronic overload relays have been designed for the protection of three-phase asynchronous and single-phase AC motors.
In addition to protection function, these devices can be used together with contactors as direct or reversing starters (star-delta (wye-delta) start also possible), which are controlled via IO-Link. This makes it possible to directly control drives via IO-Link from a higher-level controller or on site via the optional hand-held device and also, for example, to return current values directly via IO-Link.
If single-phase AC motors are to be protected by the 3RB24 electronic overload relays, the main current paths of the current measuring modules must be series-connected.
(Circuit Diagrams see Manual).

## Ambient conditions

The devices are insensitive to external influences such as shocks, corrosive ambient conditions, ageing and temperature fluctuations.

In the temperature range from $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, the 3RB24 electronic overload relays compensate the temperature in accordance with IEC 60947-4-1.

Configuration notes for use of the devices below $-25^{\circ} \mathrm{C}$ or above $+60^{\circ} \mathrm{C}$ on request.

## Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

## Note:

For the use of 3RB24 electronic overload relays in conjunction with highly energy-efficient IE3/IE4 motors, please observe the information on dimensioning and configuring, see Application Manual.
For more information, see Preface on page 7.

## Technical specifications

## More information

Application Manual "SIRIUS Controls with IE3/IE4 Motors", see
https://support.industry.siemens.com/cs/ww/en/view/94770820
Configuration Manual "Configuring SIRIUS Innovations - Selection Data for Fuseless and Fused Load Feeders", see
https://support.industry.siemens.com/cs/ww/en/view/39714188

Manual "SIRIUS 3RB24 Electronic Overload Relay for IO-Link", see https://support.industry.siemens.com/cs/ww/en/view/46165627
Technical specifications, see
https://support.industry.siemens.com/cs/ww/en/ps/16281/td

The following technical information is intended to provide an initial overview of the various types of device and functions.


## Overload Relays SIRIUS 3RB2 Electronic Overload Relays

## 3RB24 for IO-Link for high-feature applications



Overload Relays
SIRIUS 3RB2 Electronic Overload Relays

## 3RB24 for IO-Link for high-feature applications

Type - Overload relay: evaluation modules		3RB2483-4A. 1
Size contactor		S00 ... S10/S12
Auxiliary circuit		
Number of auxiliary switches		1 CO contact, 1 NO contact connected in series internally
Auxiliary contacts - assignment		- 1 CO contact for selecting the contactor (for reversing starter function), actuated by the control system   - 1 NO contact for normal switching duty, actuated by the control system (opens automatically when tripping occurs)
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)	V	300
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	kV	4
Auxiliary contacts - contact rating   - NC, NO contact with alternating current AC-14/AC-15, rated operational current $I_{\mathrm{e}}$ at $U_{\mathrm{e}}$ $-24 \mathrm{~V}$   - 120 V   - 125 V   - 250 V	A   A   A   A	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 3 \end{aligned}$
- NC, NO contacts with DC current DC-13, rated operational current $I_{\mathrm{e}}$ at $U_{\mathrm{e}}$   - 24 V   - 60 V   - 110 V   - 125 V   - 250 V   - Conventional thermal current $I_{\text {th }}$   - Contact reliability (suitability for PLC control; $17 \mathrm{~V}, 5 \mathrm{~mA}$ )	A   A   A   A   A   A	2   0.55   0.3   0.3   0.2   5   Yes
Short-circuit protection		
- With fuse, operational class gG	A	6
- With miniature circuit breaker, C characteristic	A	1.6
Protective separation between auxiliary current paths Acc. to IEC 60947-1	V	300
CSA, UL, UR rated data		
Auxiliary circuit - switching capacity		B300, R300
Conductor cross-sections of the auxiliary circuit		
Connection type		(G) Screw terminals
Terminal screw		M3, Pozidriv size 2
Operating devices	mm	$3.0 \times 0.5$
Prescribed tightening torque	Nm	$0.8 \ldots 1.2$
Conductor cross-sections (min./max.),   1 or 2 conductors can be connected   - Solid or stranded   - Finely stranded without end sleeve   - Finely stranded with end sleeve (DIN 46228-1)   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{AWG} \end{aligned}$	$\begin{aligned} & \left.1 \times(0.5 \ldots 4)^{1}, 2 \times(0.5 \ldots 2.5)^{1}\right) \\ & -- \\ & 1 \times(0.5 \ldots 2.5)^{1)}, 2 \times(0.5 \ldots 1.5)^{1)} \\ & 2 \times(20 \ldots 14) \end{aligned}$
Connection type		Spring-type terminals
Operating devices	mm	$3.0 \times 0.5$
Conductor cross-sections (min./max.),   1 or 2 conductors can be connected   - Solid or stranded   - Finely stranded without end sleeve   - Finely stranded with end sleeve (DIN 46228-1)   - AWG cables, solid or stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 2 \times\left(\begin{array}{lll} 0.25 \ldots & 1.5 \end{array}\right) \\ & - \\ & 2 \times(0.25 \ldots 1.5) \\ & 2 \times(24 \ldots 16) \end{aligned}$

1) If two different conductor cross-sections are connected to one clamping point, both cross-sections must be in the range specified


Overload Relays
SIRIUS 3RB2 Electronic Overload Relays
3RB24 for IO-Link for high-feature applications IE3/IE4 ready
3RB24 electronic overload relays (evaluation modules) for full motor protection, stand-alone installation, CLASS 5E, 10E, 20E and 30E (adjustable)

Type	3RB2483-4A. 1
Features and technical specifications	
Overload protection, phase failure protection and asymmetry protection	$\checkmark$
Supplied from an external source	24 V DC through IO-Link
Direct-on-line or reversing starters (wye-delta starting also possible) controllable through IO-Link	$\checkmark$
Auxiliary contacts	1 CO and 1 NO in series
Manual and automatic RESET	$\checkmark$
Remote RESET	(electrically or via IO-Link)
Four LEDs for operating and status displays	$\checkmark$
TEST function and self-monitoring	$\checkmark$
Internal ground-fault detection	$\checkmark$
Screw or spring-type terminals for auxiliary, control and sensor circuits	$\checkmark$
Input for PTC sensor circuit	$\checkmark$
Analog output	$\checkmark$
IO-Link-specific functions	
- Connection of direct-on-line, reversing and star-delta starters to the controller via IO-Link	$\checkmark$
- On-site controlling of the starter using the hand-held device	$\checkmark$
- Accessing process data (e.g. current values in all three phases) via IO-Link	$\checkmark$
- Accessing parameterization and diagnostics data (e.g. tripped signals) via IO-Link	$\checkmark$

$\checkmark$ Available

Selection and ordering data

$\mathrm{PU}($ UNIT, SET, M)	$=1$
$\mathrm{PS}^{\star}$	$=1 \mathrm{unit}$
PG	$=41 \mathrm{G}$



3RB2483-4AA1


3RB2483-4AC1

Size contactor	Version	SD	Screw terminals	(1)	SD	Spring-type terminals	00 $\square$
		d	Article No.	Price per PU	d	Article No.	Price per PU
Evaluation modules							
S00 ... S12	Monostable	-	3RB2483-4AA1		2	3RB2483-4AC1	

Notes:

- Overview table of overload relays - matching contactors, see page 7/76
- Analog input modules, e.g. SM 331, must be configured for 4 -wire measuring transducers. The analog input module may not supply current to the analog output of the 3RB24 relay.

Current measuring modules and related connecting cables, see page 7/132, "Accessories", see page 7/133 onwards.

## Overview

## More information

Home page, see http://www.siemens.com/sirius-overloadrelays	Application Manual "SIRIUS Controls with IE3/IE4 Motors", see
Industry Mall, see www.siemens.com/product?3RB2	https://support.industry.siemens.com/cs/ww/en/view/94770820
	Other Manuals, see
	https://support.industry.siemens.com/cs/ww/en/ps/16282/man



SIRIUS 3RB2906 current measuring module

The current measuring modules are designed as system components for connecting to evaluation units 3RB22 to 3RB24. Using these evaluation units the motor current is measured and the measured value sent to the evaluation unit for evaluation.

The current measuring modules in sizes up to S3 are equipped with straight-through transformers and can be snap-fitted under the evaluation units. The larger evaluation units are installed directly on the contactor or as stand-alone units.

## Application

Use of SIRIUS protection devices in conjunction with IE3/IE4 motors

## Note:

For the use of current measuring modules for 3RB22, 3RB23, 3RB24 in conjunction with highly energy-efficient IE3/IE4 motors, please read the information on dimensioning and configuration, see Application Manual.
For more information, see Preface on page 7.

## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays
Current measuring modules for 3RB22, 3RB23, 3RB24

## Technical specifications

| More information |  |
| :--- | :--- | :--- |
| Manuals, see https://support.industry. siemens.com/cs/ww/en/ps/16282/man | Technical specifications, see <br> https://support.industry. siemens.com/cs/ww/en/ps/16282/td |

The following technical information is intended to provide an initial overview of the various types of device and functions.


Overload Relays SIRIUS 3RB2 Electronic Overload Relays

Current measuring modules for 3RB22, 3RB23, 3RB24


## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays
Current measuring modules for 3RB22, 3RB23, 3RB24 IE3/IE4 ready
Selection and ordering data

## Current measuring modules (essential accessories)



3RB2906-2BG1, 3RB2906-2DG1


3RB2906-2JG1


3RB2956-2TG2


3RB2966-2WH2

Size contactor	Current setting value of the inverse-time delayed overload release	Short-circuit protection with fuse, type of coordination "2", operational class $\mathrm{gG}^{1)}$	For overload relays	SD	Article No.	Price per PU	$\begin{array}{r} \text { PU } \\ \text { (UNIT, } \\ \text { SET, M) } \end{array}$	PS*	PG
	A	A		d					
Sizes S00/S0									
Devices with straight-through transformer for stand-alone installation									
S00/S0	0.3... 3	20	$\begin{aligned} & \text { 3RB22 to } \\ & \text { 3RB24 } \end{aligned}$	$\stackrel{\rightharpoonup}{>}$	3RB2906-2BG1   3RB2906-2DG1		1	1 unit	41G
	$2.4 \ldots 25$	63					1	1 unit	41G

Sizes S2/S3
Devices with straight-through transformer

## for stand-alone installation

S2/S3	$10 \ldots 100$	315	$\begin{aligned} & \text { 3RB22 to } \\ & \text { 3RB24 } \end{aligned}$	-	3RB2906-2JG1	1	1 unit	41G
Size S6								
Devices with busbar connection for mounting onto contactor and stand-alone installation								
S6	$20 . .200$	315	$\begin{aligned} & \text { 3RB22 to } \\ & \text { 3RB24 } \end{aligned}$	-	3RB2956-2TH2	1	1 unit	41G
Devices with straight-through transformer for mounting onto contactor and stand-alone installation								
For mounting onto S 6 contactors with box terminals	$20 \ldots 200$	315	$\begin{aligned} & \text { 3RB22 to } \\ & \text { 3RB24 } \end{aligned}$	-	3RB2956-2TG2	1	1 unit	41G
Sizes S10/S12 ${ }^{2)}$								
Devices with busbar connection for mounting onto contactor and stand-alone installation								
S10/S12 and size 14 (3TF68/3TF69) ${ }^{2}$	$63 \ldots 630$	800	$\begin{aligned} & \text { 3RB22 to } \\ & \text { 3RB24 } \end{aligned}$	-	3RB2966-2WH2	1	1 unit	41G

1) Maximum protection by fuse only for overload relays, type of coordination "2". For fuse values in connection with contactors, See Configuration Manuals

- "Configuring SIRIUS Innovations - Selection Data for Fuseless and Fused Load Feeders",
- "SIRIUS Configuration - Selection Data for Fuseless Load Feeders".

2) For 3TF68/3TF69 contactors, direct mounting is not possible.

Note:
The connecting cable between the current measuring module and the evaluation module is not included in the scope of supply; please order separately (see "Accessories").


Additional general accessories, see page 7/133.

## Overview

## More information

Home page, see http://www.siemens.com/sirius-overloadrelays Industry Mall, see www.siemens.com/product?3RB2

The following optional accessories are available for the 3RB22 to 3RB24 electronic overload relays:

- Operator panel for the evaluation modules 3RB24
- Sealable cover for the evaluation modules 3RB22 to 3RB24

Manuals, see https://support.industry.siemens.com/cs/ww/en/ps/16283/man

- Terminal covers for the 3RB29 current measuring modules size S6 and S10/S12
- Box terminal blocks for the 3RB29 current measuring modules size S6 and S10/S12
- Push-in lugs for screw fixing for 3RB22 to 3RB24 evaluation modules and 3RB2906 current measuring modules


## Selection and ordering data

Accessories for 3RB24 overload relays

	Version	For overload relays	SD	Article No.	Price per PU	$\begin{gathered} \text { PU } \\ \text { (UNIT, } \\ \text { SET. M) } \end{gathered}$	PS*	PG
			d					
Operator panels for evalur	aluation modules							
-m	Operator panels (set)	3RB24	10	3RA6935-0A		1	1 unit	42F
	One set comprises:   - $1 \times$ operator panel   - $1 \times 3$ RA6936-0A enabling module   - $1 \times 3$ 3RA6936-0B interface cover							
3RA6935-0A	- $1 \times$ fixing terminal							
	Note:							
	The connecting cable between the evaluation module and the operator panel is not included in the scope of supply; please order separately.							
	Connecting cables   Length 2.5 m (round),   for connecting the evaluation module to the operator panel	3RB24	-	3UF7933-0BA00-0		1	1 unit	42J
	Enabling modules (replacement)	3RB24	10	3RA6936-0A		1	1 unit	42F
	Interface covers	3RB24	10	3RA6936-0B		1	5 units	42F

## General accessories

	Version	Size	For overload relays	SD	Article No.	Price per PU		PS*	PG
				d					
Sealable covers for evaluation modules									
	For covering the setting knobs	--	$\begin{aligned} & \text { 3RB22 to } \\ & \text { 3RB24 } \end{aligned}$	-	3RB2984-2		1	10 units	41F
3RB2984-2									
Terminal covers for current measuring modules									
	Covers for cable lugs and busbar connections								
	- Length 100 mm	S6	3RB2956	-	3RT1956-4EA1		1	1 unit	41B
	- Length 120 mm	S10/S12	3RB2966	$\nabla$	3RT1966-4EA1		1	1 unit	41B
	Covers for box terminals								
	- Length 25 mm	S6	3RB2956	$\checkmark$	3RT1956-4EA2		1	1 unit	41B
3RT1956-4EA1	- Length 30 mm	S10/S12	3RB2966	$\nabla$	3RT1966-4EA2		1	1 unit	41B
Slemens	Covers for screw terminals between contactor and overload relay, without box terminals (1 unit required per combination)	S6	3RB2956	-	3RT1956-4EA3		1	1 unit	41B
		S10/S12	3RB2966	-	3RT1966-4EA3		1	1 unit	41B
Box terminal blocks for current measuring modules									
- - -	For round and ribbon cables								
	- Up to $70 \mathrm{~mm}^{2}$	S6 ${ }^{1)}$	$3 \mathrm{RB2956}$	-	3RT1955-4G		1	1 unit	41B
	- Up to $120 \mathrm{~mm}^{2}$	S6	3RB2956	$\checkmark$	3RT1956-4G		1	1 unit	41B
	- Up to $240 \mathrm{~mm}^{2}$	S10/S12	$3 \mathrm{RB2966}$	-	3RT1966-4G		1	1 unit	41B
3RT195.-4G									

1) In the scope of supply for 3RT1054-1 contactors ( 55 kW )

## Overload Relays

SIRIUS 3RB2 Electronic Overload Relays
Accessories for 3RB22, 3RB23, 3RB24


1) PC labeling system for individual inscription of unit labeling plates available from:
murrplastik Systemtechnik GmbH
(see page 16/20).

[^0]:    -- No limiter required
    3) Infeed to the limiter is always on the side $1 \mathrm{~L} 1 / 3 \mathrm{~L} 2 / 5 \mathrm{~L} 3$.

    1) $10 \%$ overvoltage.
    2) $5 \%$ overvoltage.
[^1]:    1) Corresponds to "short-circuit breaking capacity" according to UL.
[^2]:    1) If two different conductor cross-sections are connected to one clamping
[^3]:    1) If two different conductor cross-sections are connected to one clamping
[^4]:    Enclosures (only for sizes S00 and SO)

[^5]:    Front plate (including holder) for sizes SOO and SO

[^6]:    $\checkmark$ Available
    -- Not available

[^7]:    1) "Technical specifications" for the use of overload relays with
    trip class $\geq$ CLASS 20E can be found in "Short-circuit protection with fuses for motor feeders" in the Configuration Manuals:

    - "Configuring SIRIUS Innovations - Selection Data for Fuseless and Fused Load Feeders",
    - "SIRIUS Configuration - Selection Data for Fuseless Load Feeders"

[^8]:    X 3RB3046-1UW1
    X 3RB3046-1XW1
    3RB3046-1UX1
    ${ }^{3)}$ With the appropriate terminal supports (see "Accessories", page 7/100), these overload relays can also be installed as stand-alone units.

    ## Note:

    For reliable operational current, note derating information, see Manual.

[^9]:    1) In the scope of supply for 3RT1054-1 contactors ( 55 kW )
[^10]:    Operating Instructions "3RB22, 3RB23 Electronic Overload Relays", see
    https://support.industry.siemens.com/cs/ww/en/view/21833251
    Technical specifications, see

[^11]:    1) The assignment of auxiliary contacts may be influenced by function expansion modules.
