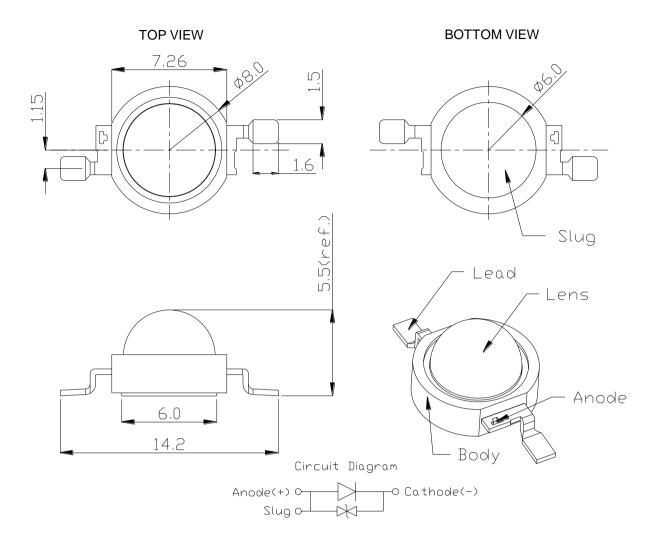


ProLight PM2B-1LPE-Y
1W PC Yellow Power LED
Technical Datasheet
Version: 1.1


Features

- Phosphor-Converted Yellow high flux LED
- Low-temp. & lead free reflow soldering
- Good color uniformity
- RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV
- Superior ESD protection

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

Emitter Mechanical Dimensions

Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required --- slug of device is not electrically neutral. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. All dimendions without tolerances are for reference only.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics at 350mA, T_J = 25°C

Radiation Pattern	Color	Part Number	Lumious Flux Φ_{V} (lm)	
	Coloi	Emitter	Minimum	Typical
Lambertian	Yellow	PM2B-1LPE-Y	67.2	84

[•] ProLight maintains a tolerance of ± 10% on flux and power measurements.

Electrical Characteristics at 350mA, T_J = 25°C

	Fo	orward Voltage V _F (Thermal Resistance	
Color	Min.	Тур.	Max.	Junction to Slug (°C/W)
Yellow	2.85		4.1	10

Optical Characteristics at 350mA, T_J = 25°C

	Co	lor Temperature C	ст	Total included Angle	Viewing Angle
Color	Min. Typ. Max.		(degrees) $\theta_{0.90V}$	(degrees) 2 θ _{1/2}	
Yellow	579 nm	580 nm	581 nm	180	130

[•] ProLight maintains a tolerance of ± 5% for CCT measurements.

[•] Please do not drive at rated current more than 1 second without proper heat sink.

Absolute Maximum Ratings

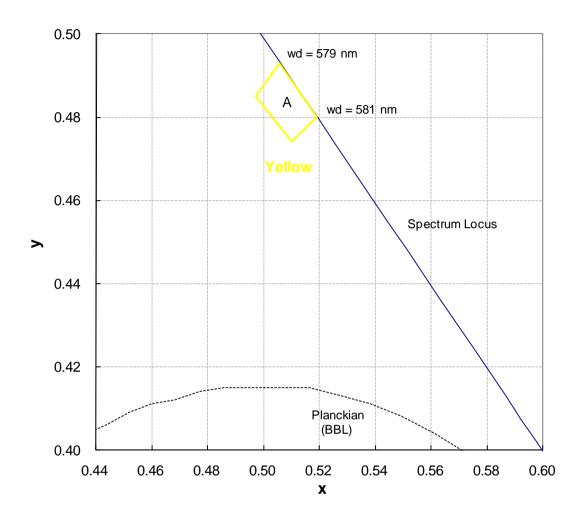
Parameter	Yellow	
DC Forward Current (mA)	350	
Peak Pulsed Forward Current (mA)	500	
Average Forward Current (mA)	350	
ESD Sensitivity	±4000V (Class III)	
(HBM per MIL-STD-883E Method 3015.7)		
LED Junction Temperature (°C)	120	
Aluminum-core PCB Temperature (°C)	105	
Storage & Operating Temperature (°C)	-40 to +105	
Soldering Temperature(°C)	235°C	

Radiometric Power Bin Structure

Cold	or	Bin Code	Minimum Radiometric Power (mW)	Maximum Radiometric Power (mW)	Available Color Bins
		T1	67.2	76.6	All
Yello	W	T2	76.6	87.4	All
		U1	87.4	99.6	[1]

- ProLight maintains a tolerance of ± 10% on flux and power measurements.
- The flux bin of the product may be modified for improvement without notice.
- ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Forward Voltage Bin Structure

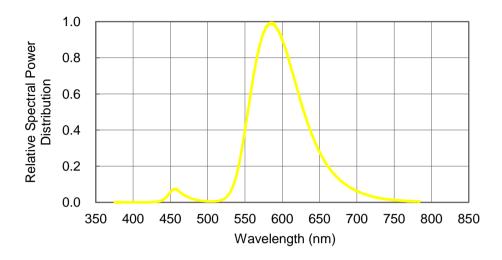

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	А	2.85	3.10
	В	3.10	3.35
Yellow	D	3.35	3.60
	E	3.60	3.85
	F	3.85	4.10

• ProLight maintains a tolerance of ± 0.1 for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Bins

Yellow Binning Structure Graphical Representation


Color Bins

Yellow Bin Structure

Bin Code	X	У
	0.506	0.493
Α	0.519	0.480
A	0.510	0.474
	0.497	0.485

Yellow Color Spectrum

1. Yellow

Forward Current Characteristics, Tj=25°C

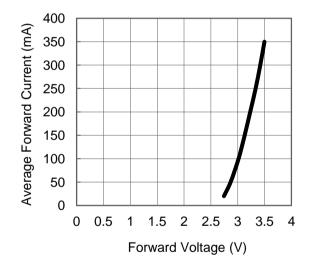


Fig 1. Forward Current vs. Forward Voltage

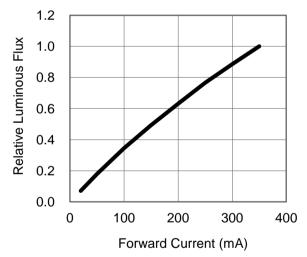
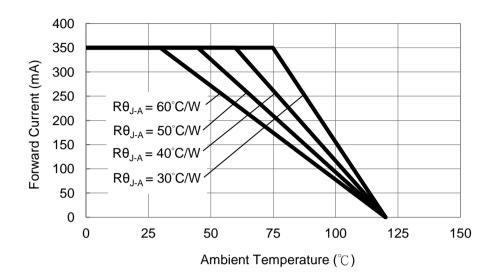
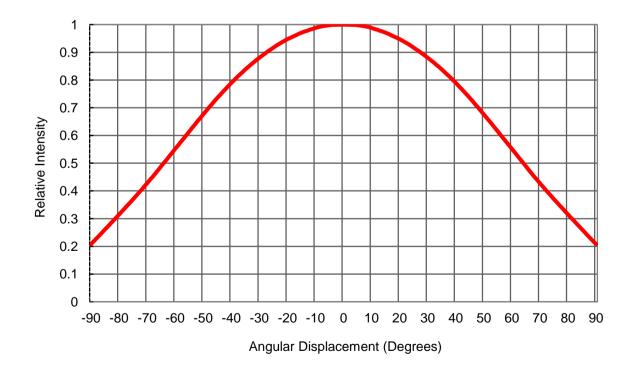



Fig 2. Relative Luminous Flux vs. Forward Current at Tj=25℃ maintained.


Ambient Temperature vs. Maximum Forward Current

Yellow $(T_{JMAX} = 120^{\circ}C)$

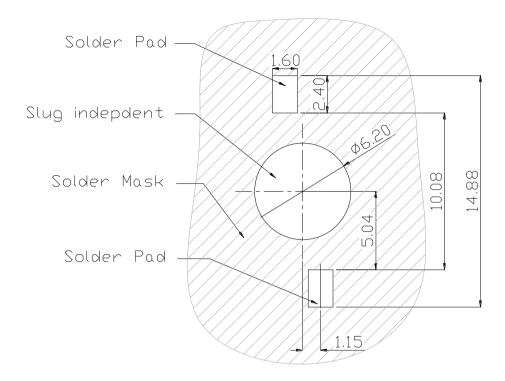
Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Operating Life (RTOL)	,		
Wet High Temperature	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Operating Life (WHTOL)	, ,		
Wet High Temperature	85°C/85%RH, non-operating	1000 hours	Note 2
Storage Life (WHTSL)	00 0/00/mixin, from operating	1000 110013	NOIC Z
High Temperature	110°C, non-operating	1000 hours	Note 2
Storage Life (HTSL)	110 C, Hon-operating	1000 110015	Note 2
Low Temperature	-40°C, non-operating	1000 hours	Note 2
Storage Life (LTSL)	-40 C, non-operating	1000 110015	
Non-operating	-40°C to 120°C, 30 min. dwell,	200 cycles	Note 2
Temperature Cycle (TMCL)	<5 min. transfer	200 Cycles	Note 2
Non-operating	-40°C to 120°C, 20 min. dwell,	200 cycles Note 2	Note 2
Thermal Shock (TMSK)	<20 sec. transfer	200 Cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse,		Note 3
Wechanical Shock	5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Natural Brop	On concrete from 1.2 m, 5X		14010 9
Variable Vibration	10-2000-10 Hz, log or linear sweep rate,		Note 3
Frequency	20 G about 1 min., 1.5 mm, 3X/axis		NOLE O
Solderability	Steam age for 16 hrs., then solder dip		Solder coverage
Colderability	at 260°C for 5 sec.		on lead

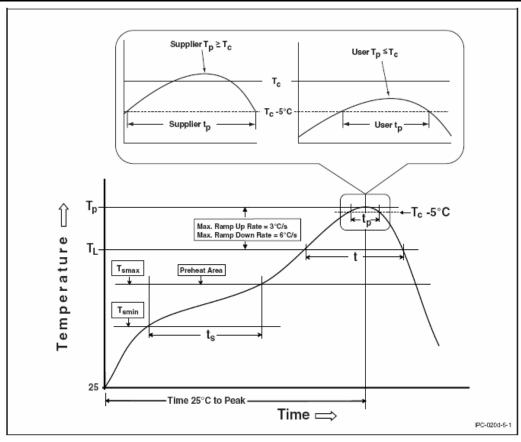
Notes:


- 1. Depending on the maximum derating curve.
- 2. Criteria for judging failure

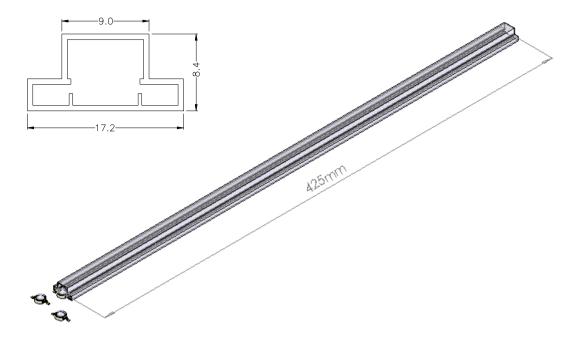
Item	Test Condition	Criteria for Judgement		
пст	rest Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or	I _F = max DC	Initial Level x 0.7		
Radiometric Power (Φ_V)	IF = IIIAX DC	iriiliai Levei X 0.7		
Reverse Current (I _R)	$V_R = 5V$		50 μA	

^{*} The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Low-Temp. & Pb-Free Assembly (58Bi-42Sn Eutectic Alloy)	
Preheat & Soak			
Temperature min (T _{smin})	100 °C	90 °C	
Temperature max (T _{smax})	150 °C	120 °C	
Time (T _{smin} to T _{smax})	60-120 seconds	60-120 seconds	
Average Ramp-Up Rate (T _{smax} to T _P)	3 °C / second max.	2 °C / second max.	
Liquidous temperature (T _L)	183°C	138°C	
Time at liquidous (t _L)	60-150 seconds	20-50 seconds	
Peak package body temperature (T _P)	235°C	185°C	
Time (t _P) within 5°C of the specified	20	20 accords	
classification temperature (T _C)	20 seconds	20 seconds	
Average ramp-down rate (T _P to T _{smax})	6 °C/second max.	3 °C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	4 minutes max.	

- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than two times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Notes:

- 1. 50 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.

^{**}Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

- Storage
 - Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.
- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- The slug is to be soldered. If not, please use the heat conductive adhesive.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/