HIGH SPEED DUAL CHANNEL OPTICALLY COUPLED ISOLATOR PHOTOTRANSISTOR OUTPUT

APPROVALS

- UL recognised, File No. E91231

DESCRIPTION

These dual channel diode-transistor optocouplers use a light emitting diode and an integrated photon detector to provide 2500 Volts ${ }_{\text {RMS }}$ electrical isolation between input and output. Seperate connection for the photodiode bias and output transistor collector improve the speed up to a hundred times that of a conventional photo-transistor coupler by reducing the base-collector capacitance.

FEATURES

- High speed - 1 MBits/s
- High Common Mode Transient Immunity $1000 \mathrm{~V} / \mu \mathrm{s}$
- TTL Compatible
- 3 MHz Bandwidth
- Open Collector Outputs
- 2500 V rMs Withstand Test Voltage, 1 Min
- ICPL2531 has improved noise shield which gives superior common mode rejection
- Options :-

10mm lead spread - add G after part no.
Surface mount - add SM after part no.
Tape\&reel - add SMT\&R after part no.

- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Line receivers
- Pulse transformer replacement
- Wide bandwidth analog coupling
- Output interface to CMOS-LSTTL-TTL

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

```
Storage Temperature
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature
``` \(\qquad\)
``` \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) Lead Soldering Temperature
( \(1 / 16\) inch ( 1.6 mm ) from case for 10 secs ) \(260^{\circ} \mathrm{C}\)
```


INPUT DIODE

Average Forward Current $25 \mathrm{~mA}(1)$ Peak Forward Current $50 \mathrm{~mA}(2)$ $(50 \%$ duty cycle, 1 ms pulse width) Peak Transient Current (equal to or less than $1 \mu \mathrm{~s}$ P.W., 300 pps$)$ Reverse Voltage 5 V Power Dissipation $45 \mathrm{~mW}(3)$	

Peak Fowad Cut
nA (1)
(50% duty cycle, 1 ms pulse width)
(equal to or less than $1 \mu \mathrm{~s}$ P.W., 300 pps)
Reverse Voltage 45 mW (3)

DETECTOR

Average Output Current	8 mA
Peak Output Current	16 mA
Supply Voltage	-0.5 to +30 V
Output Voltage	-0.5 to +20 V
Power Dissipation	$35 \mathrm{~mW}(4)$

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA
Tel:(214)495-0755 Fax:(214)495-0901 e-mail info@isocom.com http://www.isocom.com

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER	SYM	DEVICE	MIN	TYP*	MAX	UNITS	TEST CONDITION
Current Transfer Ratio (note 5,6)	CTR	$\begin{aligned} & \text { ICPL2530 } \\ & \text { ICPL2531 } \end{aligned}$	$\begin{aligned} & 7 \\ & 19 \end{aligned}$	18		$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
		$\begin{array}{\|l\|l} \text { ICPL2530 } \\ \text { ICPL2531 } \end{array}$	$\begin{aligned} & 5 \\ & 15 \end{aligned}$	13		$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
Logic Low Output Voltage (note 5)	$\mathrm{V}_{\text {oL }}$	ICPL2530		0.1	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
		ICPL2531		0.1	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Logic High Output Current (note 5)	I_{OH}			$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 500 \\ & 10 \end{aligned}$	nA $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$
Logic Low Supply Current	$\mathrm{I}_{\text {CLL }}$			80		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{FF}}=\mathrm{I}_{\mathrm{F} 2}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\text { open } \end{aligned}$
Logic High Supply Current	$\mathrm{I}_{\text {CCH }}$			0.01	4	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F} 1}=\mathrm{I}_{\mathrm{F} 2}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{O} 2}=\text { open } \end{aligned}$
Input Forward Voltage (note 5)	V_{F}			1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Temperature Coefficient of Forward Voltage (note 5)	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$			-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$
Input Reverse Voltage (note 5)	V_{R}		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Capacitance (note 5)	$\mathrm{C}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$
Input-output Isolation Voltage (note 7)	$\mathrm{V}_{\text {ISO }}$		2500	5000		$\mathrm{V}_{\text {RMS }}$	R.H.equal to or less than $50 \%, \mathrm{t}=1 \mathrm{~min} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Resistance (Input to Output) (note 7)	$\mathrm{R}_{\text {IO }}$			10^{12}		Ω	$\mathrm{V}_{\text {IO }}=500 \mathrm{~V} \mathrm{dc}$
Capacitance (Input to Output) (note 7)	C_{10}			0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input-Input Insulation Leakage Current (note 8)	$\mathrm{I}_{\text {I-I }}$			0.005		$\mu \mathrm{A}$	45% Relative Humidity $\mathrm{t}=5 \mathrm{~s}, \mathrm{~V}_{\mathrm{t}-\mathrm{I}}=500 \mathrm{~V} \mathrm{dc}$
Resistance (Input to Input)(note8)	$\mathrm{R}_{\text {I-I }}$			10^{11}		Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{I}}=500 \mathrm{~V} \mathrm{dc}$
Capacitance (Input to Input)(note8)	C_{1-1}			0.25		pF	$\mathrm{f}=1 \mathrm{MHz}$

* All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SWITCHING SPECIFICATIONS AT $T_{A}=25^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V} \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}\right.$ Unless otherwise noted $)$

PARAMETER	SYM	DEVICE	MIN	TYP	MAX	UNITS	TEST CONDITION
Propagation Delay Time to Logic Low at Output (fig 1)	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { ICPL2530 } \\ & \text { ICPL2531 } \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega,(\text { note } 11) \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega,(\text { note } 10) \end{aligned}$
Propagation Delay Time to Logic High at Output (fig 1)	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { ICPL2530 } \\ & \text { ICPL2531 } \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega,(\text { note } 11) \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega,(\text { note } 10) \end{aligned}$
Common Mode Transient Immunity at Logic High Level Output (fig 2)	CM_{H}	ICPL2530		1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega,(\operatorname{note} 9,11) \end{aligned}$
		ICPL2531		1000		V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega,(\text { note } 9,10) \end{aligned}$
Common Mode Transient Immunity at Logic Low Level Output (fig 2)	CM_{L}	ICPL2530		-1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega,(\text { note } 9,11) \end{aligned}$
		ICPL2531		-1000		$\mathrm{V} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega,(\text { note } 9,10) \end{aligned}$
Bandwidth	BW			3		MHz	$\mathrm{R}_{\mathrm{L}}=100 \Omega$, (note 12)

NOTES:-

1. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Each channel.
6. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F} times 100%.
7. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins $5,6,7$ and 8 shorted together.
8. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common mode pulse V_{CM} to assure that the output will remain in a Logic High state (i.e. $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM} to assure that the output will remain in Logic Low state (i.e. $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$).
10. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
11. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and the $6.1 \mathrm{k} \Omega$ pull-up resistor.
12. The frequency at which the a.c. output voltage is 3 dB below the low frequency asymptote.

FIG. 1 SWITCHING TEST CIRCUIT

FIG. 2 TEST CIRCUIT FOR TRANSIENT IMMUNITY AND TYPICAL WAVEFORMS

Logic High Output Current vs. Ambient Temperature

Normalized Current Transfer Ratio vs. Ambient Temperature

