DISPLAY Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 320240B FGH-PW-N 3,8" (1/4-VGA)

Product specification

Version:0

GENERAL SPECIFICATION

MODULE NO.:

DEM320240B FGH-PW-N

CUSTOMER P/N

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	06-04-2006

PREPARED BY: HZZ DATE: 06.04.2006

APPROVED BY: MH DATE: 02.08.2006

CONTENTS

1. FUNCTIONS &FEATURES	2
2. MODULE ARTWORK	2
3. EXTERNAL DIMENSIONS	2
4. BLOCK DIAGRAM	3
5. PIN ASSIGNMENT	3
6. ABSOLUTE MAXIMUM RATINGS	4
7. BACKLIGHT ELECTRICAL/OPTICAL SPECIFICATIONS	4
8. PCB DRAWING AND DESCRIPTION	5
9. DC CHARACTERISTICS	6
10. AC CHARACTERISTICS	7
11. OPTICAL CHARACTERISTICS	10
12. LCD MODULES HANDLING PRECAUTIONS	12
13 OTHERS	12

1. FUNCTIONS & FEATURES

• LCD TYPE:

MODULE NAME	LCD TYPE	OPTICS		
DEM 320240B FGH-PW-N	FSTN Transmissive Negative Mode	White dots, dark background		

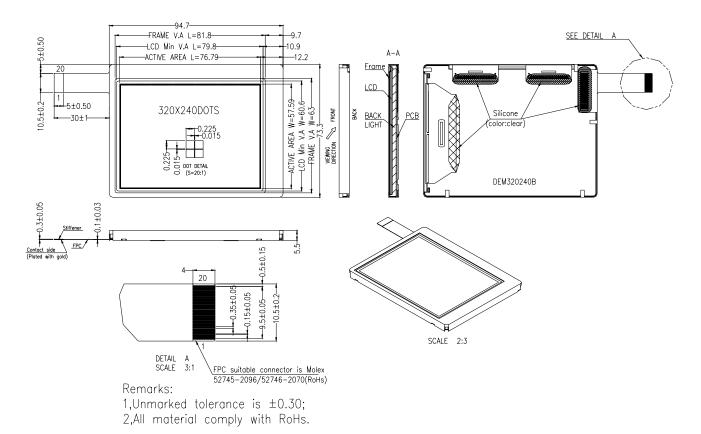
• Viewing Direction : 6 o'clock

• Driving Scheme : 1/240 Duty, 1/13 Bias,

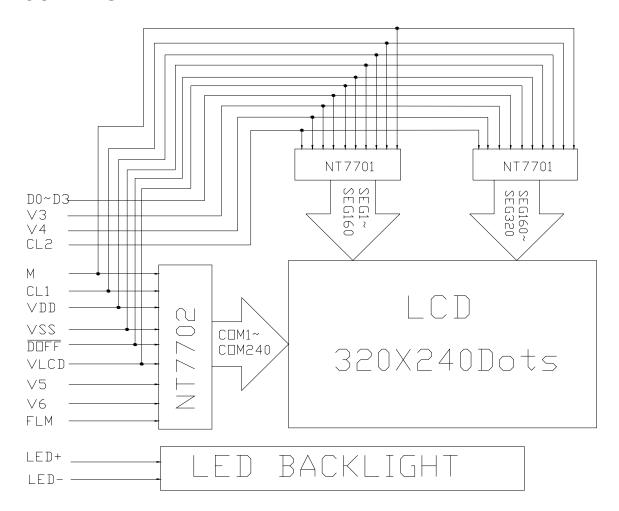
Backlight color : LED, white, Lightguide

• Interface : Parallel

• Drive IC : NT7701 and NT7702


2. MODULE ARTWORK

• Module size : 124.7 x 73.3 x 5.5 mm


Metal frame Viewing Area : 81.8 x 63.0 mm
 LCD Viewing Area : 79.8 x 60.6 mm
 Dot Pitch : : 0.24 x 0.24 mm
 Dot Size : 0.225 x 0.225 mm

• Dot Gap : 0.015 mm

3. EXTERNAL DIMENSIONS

4. BLOCK DIAGRAM

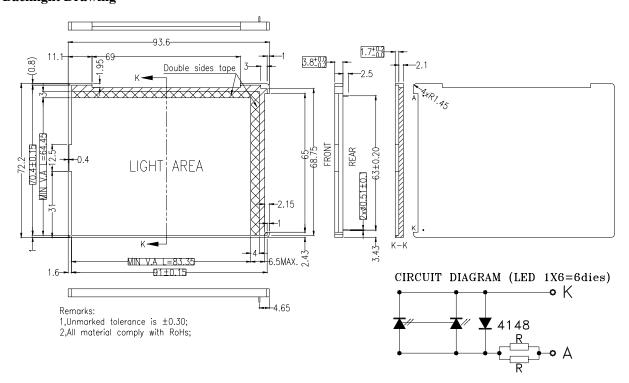
5. PIN ASSIGNMENT

PIN NUMBER	SYMBOL	FUNCTION
1	FLM	Frame start signal data signal of the shift register of the com driver
2	V6	Bias voltage for non-select (com driver)
3	VDD	Power supply for logic
4	V5	Bias voltage for non-select (com driver)
5	/DOFF	Hi: Display on; Low: Display off
6	VSS	Ground
7	M	Switch signal to convert LCD driver waveform into AC
8	CL1	 Latch pulse of display data Shift clock for com driver
9	VLCD	Power supply for LCD
10	V3	Bias voltage for non-select (seg driver)
11	VDD	Power supply for logic
12	V4	Bias voltage for non-select (seg driver)
13	VSS	Ground
14	CL2	Clock pulse for seg shift
15~18	D0~D3	Input data signal
19	VLED(+)	Power supply for LED backlight
20	VLED(-)	Power supply for LED backlight

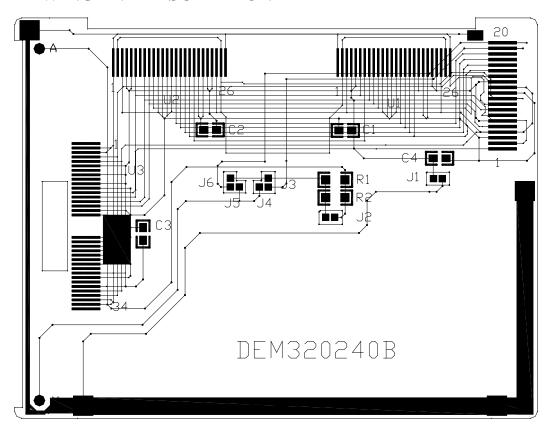
6. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Symbol Min. Max.		Unit	Note
Supply voltage Logic	VDD	-0.3	7.0	V	-
Input voltage		-0.3	VDD+0.3	V	-
Supply voltage Vo	Vlcd	-0.3	30		-
Operating Temperature		-20	+70	°C	-
Storage temperature		-30	+80	°C	-

7. BACKLIGHT ELECTRICAL/OPTICAL SPECIFICATIONS


7.1 Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Conditions	Rating	Unit
Absolute Maximum Forward Current	Ifm		150	mA
Peak Forward Current	Ifp	1 msec Plus 10% Duty Cycle	360	mA
Reverse Voltage	Vr		1	V
Power Dissipation	Pd		450	mW


7.2 Backlight Electro/Optical Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Condifion		
Forward Voltage	Vf	3.7	4.0	4.3	V	If=90mA		
Reverse Current	Ir			50	uA	Vr=0.8V		
Peak Wave Length	λр				nm	If=90mA		
Spectral Line Half Width	Δλ				nm	If=90mA		
Luminance	Lv	110			cd/m ²	If=90mA		
Backlight Color		White						

7.3 Backlight Drawing

8. PCB DRAWING AND DESCRIPTION

8-1.DESCRIPTION:

8-1-1. The polarity of the pin 19 and the pin 20:

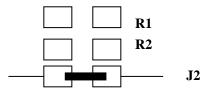
	symbol	J3.J5	J6, J4	LED Po	olarity
symbol	state	33,33	JO, J4	19Pin	20Pin
J3,J5	Each solder-bridge	Each closed	Each open	Anode	Cathode
J6,J4	Each solder-bridge	Each open	Each closed	Cathode	Anode

Note: In application module, J3=J5 = closed, J4=J6= open.

8-1-2. The J1 is frame-GND to module GND.

Note: In application module, J1= closed,

8-1-3. The LED resistor can be bridged when J2 is closed


Note: In application module, J2=open

8-1-4. The R1 and R2 are the LED resistors.

Note: In application module, R1=24 Ohm; R2=open

8-2 Example application

8-2-1. The LED resistor should be bridged as following.

8-2-2. The 19 pin is the anode and the 20 pin is the cathode as following.

8-2-3. The 19 pin is the cathode and the 20 pin is the anode as following.

8-2-4. The frame is on ground as following

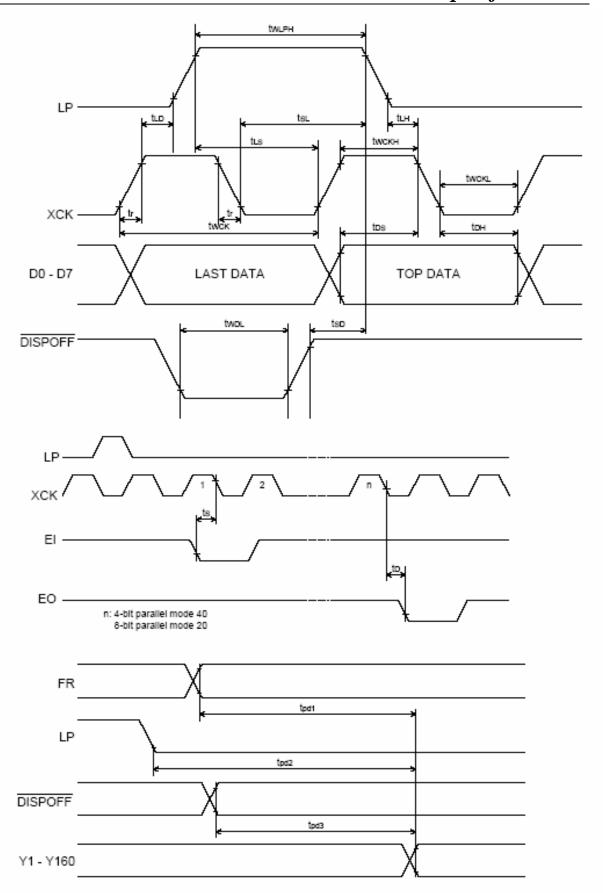
9. DC CHARACTERISTICS

 $(V_{SS} = 0V, Ta = -20 \text{ to } +70^{\circ}C)$

		(122-	J v, 1a –	2010	1700)
Parameter	Symbol	Min.	Тур	Max	Unit
Supply Voltage Logic	$V_{ m DD}$	2.5	3.3	5.5	V
Consumed current	\mathbf{I}_{i}		TBD		mA
LCD driving voltage		15	22.5	30	V

10. AC CHARACTERISTICS

10.1. NT7701 Segment Mode AC Characteristics

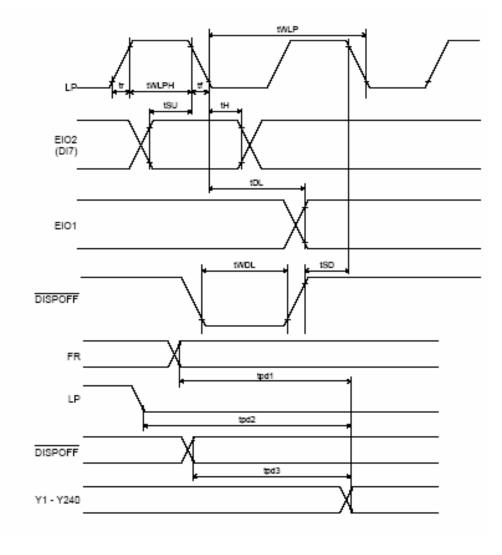

(VSS=V5=0V, VDD=+2.5V to +4.5V, V0=+15 to +30V, Ta=-20~+70°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Shift clock period	twcĸ	125	-		ns	tr, tf ≦ 11ns, Note 1
Shift clock "H" pulse width	twcĸн	51	-		ns	
Shift clock "L" pulse width	twckL	51	-		ns	
Data setup time	tos	30	-		ns	
Data hole time	tDH	40	-		ns	
Latch pulse "H" pulse width	twlph	51	-		ns	
Shift clock rise to Latch pulse rise time	tld	0	-		ns	
Shift clock fall to Latch pulse fall time	tsL	51	-		ns	
Latch pulse rise to Shift clock rise time	tLs	51	-		ns	
Latch pulse fall to Shift clock fall time	tlh	51	-		ns	
Input signal rise time	tr		-	50	ns	Note 2
Input signal fall time	tf		-	50	ns	Note 2
Enable setup time	ts	36	-		ns	
DISPOFF Removal time	tsp	100	-		ns	
DISPOFF enable pulse width	twoL	1.2	-		μS	
Output delay time (1)	t _D		-	78	ns	CL = 15pF
Output delay time (2)	tpd1, tpd2		-	1.2	μS	CL = 15pF
Output delay time (3)	t _{pd3}		-	1.2	μS	CL = 15pF

Note

^{1.} Take the cascade connection into consideration.

^{2. (}tcк - twcкіі - twcкі)/2 is the maximum in the case of high speed operation.



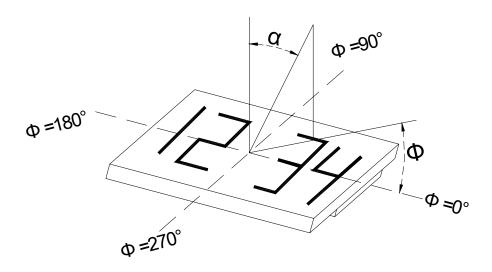
Timing Characteristics of segment Mode

10.2 NT7702 Common Mode AC Characteristics

 $(VSS=V5=0V, VDD=+2.5V \text{ to } +4.5V, V0=+15 \text{ to } +30V, Ta=-20\sim70^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Shift clock period	t _{WLP}	250	-	-	ns	tr, tr≤ 20ns
Chiff aloak "H" pulse width	turi pu	15	-	-	ns	Vpp = +5.0V ± 10%
Shift clock "H" pulse width	tw.ph	30	-	-	ns	V _{DD} = +2.5 - +4.5V
Data setup time	tsu	30	-	-	ns	
Data hole time	tн	50	-	-	ns	
Input signal rise time	tr		-	50	ns	
Input signal fall time	tr		-	50	ns	
DISPOFF Removal time	tsp	100	-	-	ns	
DISPOFF enable pulse width	twoL	1.2	-	-	με	
Output delay time (1)	tDL	-	-	200	ns	CL = 15pF
Output delay time (2)	tpd1, tpd2	-	-	1.2	με	CL = 15pF
Output delay time (3)	tpd3	-	-	1.2	με	CL = 15pF

Timing Characteristics of common Mode

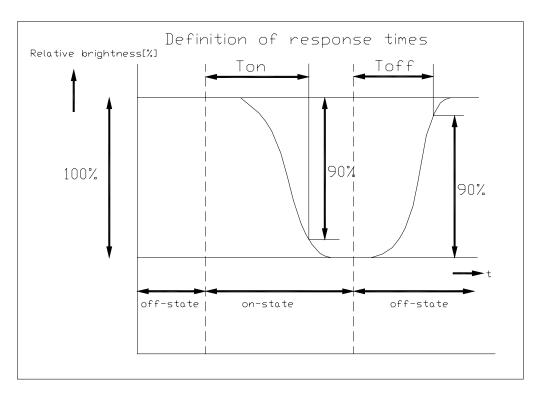

11. OPTICAL CHARACTERISTICS

11.1 Overall optical performance

Positive display

ITEM	SYMBOL	CONDITIONS	TYP.	UNIT	REMARKS
Viewing angles for Contrast Ratio CR > 3	α	$ \Phi = 0^{\circ} \Phi = 90^{\circ} \Phi = 180^{\circ} \Phi = 270^{\circ} $	51 42 27 40	0	Transmissive operation

Definition of viewing angles Φ,α and contrast ratio $\square R$



Contrast ratio $\square R = \frac{Brightness\ of\ \square FF-segmebts}{Brightness\ of\ \square N-segmebts}$

11.2 Response times at different temperatures

Response times t_{on} and t_{off} are measured using simulated MUX at $f=f_{FRAME}$. Vop (+25°C) will be identical to Vop (+25°C) as specified for the viewing angles.

Item	Symbol	Conditions	Тур.	Max.	Unit	Remarks
	t _{on}	T _{amb} = +25°C	103.36		ms	α =0°, Φ = 0°
		0°C	371.078		ms	
Response		-20°C	207.969		ms	
Times	t _{off}	T _{amb} = +25°C	408.263		ms	
		0°C	1073.424		ms	
		-20°C	4109.318		ms	

12. LCD MODULES HANDLING PRECAUTIONS

- Please remove the protection foil of polarizer before using.
- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarize carefully.
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment
 - -Be sure to ground the body when handling the LCD module.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

■ Storage precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

13. OTHERS

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD modules have been operating for a long time showing the same display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD modules resulting from caused by static electricity, etc. exercise care to avoid holding the following sections when handling the modules:
 - Exposed area of the printed circuit board
 - Terminal electrode sections.