F\&F Filipowski sp. j.
Konstantynowska 79/81 95-200 Pabianice
tel/fax $+48422152383 ;$ 227097 POLAND
http:/www.fif.com.pl e-mail: fif@fif.com.pl

PULSE COUNTER

MB-LI-4 four-channel with MODBUS RTU output Lo WARRANTY. The F\&F products are
covered by a warrantrof of the 2 months
from the date of purchase. Effective only with proof of purchase. Contact your dealeror directly with us. More information how to make a compliant can efound on the website:
www.fif.com.pl/reklamacie
Do not dispose of this device to a garbage bin with other unsorted waste!
In accordance with the Waste Electrical and Electronic Equipment Act

- In accordance with the Waste Electrical and flectronic Equipment Ac quantity to a collection point established for this purpose, as well as to the store in the event of purchasing new equipment (as per the old for new rule
regardless of brand). Electro-waste thrown in the garbage bin or abandoned in the bosom of nature pose a threat to the environment and human health.

Purpose

The pulse counter is used for counting the $A C / D C$ signals generated by external devices to determine the number of completed work cycles and for exchanging the data via RS-485 port in accordance with the MODBUS RTU protocol.

Features

* four independent counter
* counter input designed to work with AC/DC signals
* factor adjustment (a floating-point value)
* rescaled value (number of pulses \times factor)
* selecting a mode of state 1 trigger: high or low voltage
* selecting an input pulse edge (leading or trailing)
* frequency filter that allows you to limit the maximum frequency of
counted pulses (to eliminate interferences on the input of the counter)
* memory of counter status after power failure
* digital input
-1 -

Communication registers							
address	description	function	type	atr			
256	Reading of current one and recording of new base address: $1 \div 245$	$\begin{aligned} & \hline 03 \\ & 06 \\ & \hline \end{aligned}$	int	read write			
257	Reading of current one and recording of new transmission rate: 0:1200 / 1:2400 / 2:4800 / 3:9600 / 4:19200 / 5:38400 / 6:57600 / 7:115200	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	read write			
258	Reading of current one and recording of new parity value: 0 :NONE / 1:EVEN / 2:ODD	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	read write			
259	Readout of current one and recording of new stop bits quantity: 0:1bit / 1:1,5bit / 2:2bits	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	read write			
260	Factory settings: Enter 1.	06	int	write			
Note! Any change in communication parameters (transmission rate, quantity of stop bits. parity) will be applied only after power restart.							
1024-1025	$\begin{aligned} & \text { Module operation time [s] } \\ & \text { R1024 } 256^{2}+\text { R1024 } \end{aligned}$	03	int	read			
1026-1027	Serial number R1026 $\times 256^{2}+$ R1027	03	int	read			
1028	Production date: 5 bits - day, 4 bits month, 7 bits - year (without 2000)	03	int	read			
1029	Software version	03	int	read			
1030	Completion: 0 - Lo; 1-Hi	03	int	read			
1031-1035	Identifier: F\& \| F	MB	-4	LI	03	int	read
1039	Configuration jumper: 0 - open, 1 - closed	03	int	read			

Digital inputs registers				
address	description	command	type	atr
0	Input states reading $0 / 1-4$ bits (e.g. 1001) Order: $\|\ln 4\| \ln 3\|\ln 2\| \ln 1 \mid$	01	int	read
16	In1: input state 0/1	03	int	read
32	In2: input state 0/1	03	int	read
48	In3: input state 0/1	03	int	read
64	In4: input state 0/1	03	int	read

Operation
The MB-LI-4 module is a four-channel one-way counter. Each channel is independent and counts the impulses in accordance with individual settings. The results are presented in the form of a number of pulses and rescaled value in a range from 0 to $\sim 4,29$ billion. Reading of the counter can be rese independently for each channel. Once the maximum number of pulses (overflow) is reached, counter automatically resets and counts from 0 . The (overflow) is reached, counter automatically resets and counts from 0 . The (V+) signal and with leading or trailing edge. In addition, counting input can be used as
In additan, counting input can be used as a DI digital input with the ability to readits state.
Reading the
Reading the values of counted pulses, a rescaled value, adjustment of all RS-485 port using MODBUS RTU communication protocol. Power is indicated by a green LED U light. Correct data exchange between the module and other device is indicated by the LED yellow Tx light.

Protocol parameters MODBUS RTU

Communication parameters	
Protocol	MODBUSRTU
Operation mode	SLAVE
Port settings (factory settings)	$\begin{aligned} & \text { bit/s: } 1200 / 2400 / 4800 / \underline{9600} / 19200 / 38400 \\ & \text { /57600/115200 } \\ & \text { Data bits: } \\ & \text { Parity: } \underline{\text { NONE }} \text { /EVEN / ODD } \\ & \text { Start bits: } \underline{1} \\ & \text { Stop bits: } 1 / 1.5 / \underline{\mathbf{2}} \end{aligned}$
Range of network addresses (factory settings)	$1 \div 245$ (1)
Command codes	1: Input state reading (0×01-Read Coils) 3: Registers group reading (0×03-Read Holding Register) 6: Single register value setting (0×06) - Write Single Register)
Maximum frequency of queries	15 Hz

- 2 -

Counters registers				
address	description	command	type	atr
17-18	In1: input state. R17 $\times 256^{2}+\mathrm{R18}$	03	int	read
33-34	In2: input state. R33 $\times 256^{2}+\mathrm{R} 34$	03	int	read
49-50	In3: input state. R49 $256^{2}+\mathrm{R} 50$	03	int	read
65-66	In4: input state. R65 $256^{2}+$ R66	03	int	read
19-20	In1: rescaled value	03	float	read
21-22	$\ln 1$: rescaled value - integer part	03	int	read
23-24	$\ln 1$: rescaled value - fraction part: 6 digits $\times 0.000001 \quad$ (250000 -> 0.25)	03	int	read
31	In1: counter reset. Enter 0.	06	int	write
35-36	In2: rescaled value	03	float	read
37-38	In2: rescaled value - integer part	03	int	read
39-40	In2: rescaled value - fraction part: 6 digits $\times 0.000001 \quad$ (250000 $->0.25$)	03	int	read
47	In2: counter reset. Enter 0 .	06	int	write
51-52	In3: rescaled value	03	float	read
53-54	In3: rescaled value - integer part	03	int	read
55-56	In3: rescaled value - fraction part: 6 digits $\times 0.000001 \quad$ (250000 -> 0.25)	03	int	read
63	In3: counter reset. Enter 0 .	06	int	write
67-68	In4: rescaled value	03	float	read
69-70	In4: rescaled value - integer part	03	int	read
71-72	In4: rescaled value - fraction part: 6 digits $\times 0.000001 \quad$ (250000 -> 0.25)	03	int	read
79	In4: counter reset. Enter 0 .	06	int	write

Configuration registers				
address	description	command	type	atr
512	In1: min. pulse time [ms]. Range $1 \div 15000$	03/06	int	r/w
513	In1: logika. 0: trailing edge; 1: leading edge	03/06	int	r/w
514	In1: multiplier. Range $1 \div 10000$	03/06	int	r/w
515	In1: divisor. Range 1 $\div 10000$	03/06	int	r/w
528	In2: min. pulse time [ms]. Range $1 \div 15000$	03/06	int	r/w
529	In2: logic. 0: trailing edge; 1 : leading edge	03/06	int	r/w
530	In2: multiplier. Range $1 \div 10000$	03/06	int	r/w
531	In2: divisor. Range 1 $\div 10000$	03/06	int	r/w
544	In3: min. pulse time [ms]. Range $1 \div 15000$	03/06	int	r/w
545	In3: logic. 0: trailing edge; 1 : leading edge	03/06	int	r/w
546	In3: multiplier. Rang 1 $\div 10000$	03/06	int	r/w
547	In3: divisor. Range 1 $\div 10000$	03/06	int	r/w
560	In4: min. pulse time [ms]. Zakres $1 \div 15000$	03/06	int	r/w
561	In4: logic. 0 : trailing edge; 1 : leading edge	03/06	int	r/w
562	In4: multiplier. Range 1 $\div 10000$	03/06	int	r/w
563	In4: divisor. Range 1 $\div 10000$	03/06	int	r/w
Setting of the factor for the rescaled value is the result of the multiplication and division of the registers set values (e.g. registers R514 and R515 for $\ln 1$) Example: factor of 2: multiplier $=2$; divisor $=1(2 / 1=2)$ factor of 1.68: multiplier $=168$; divisor $=100(168 / 100=1.68)$ factor of 0.68 : multiplier $=68$; divisor $=100(68 / 100=0.68)$				
Default values : $\operatorname{logic}=1$; pulse duration $=5 \mathrm{~ms}$; multiplier $=1$; divisor $=1$				

Connecting the counting and digital inputs

Triggering with high voltage

Triggering with low voltage

Installation
General guidelines:

* Use of surge protectors and interference filters is recommended (e.g. OP-230).
* Use of shielded twisted wires is recommended for connecting the unit to another device
* If using shielded cables, ground the shield on one side only and as close to the device as possible.
* Do not run signal cables parallel and in direct proximity to high- and medium voltage line.
* Do not install the module in direct proximity to high power receivers, electro magnetic measuring devices, appliances with phase power adjustment and any other devices that can create interferences

Instalation:

1. Set the selected MODBUS communication parameters and counting options prio to unit installation.
2. Disconnect the power to the distribution box
3. Install the module on the rail,
4. Connect the module power supply to terminals 1-3 as indicated
5. Connect signal output 4-6 (RS-485 port) to the MASTER output of another device
6. Connect the wires to counting inputs in accordance with selected triggering option (with low or high signal).

Reset of communication settings
The configuration jumper is located under the front casing of the module. Activatin the controller with closed jumper will restore factory settings of the communication parameters. To do this, remove the front casing of the module and put the jumper cap on both pins. When the reset is done, remove the jumper.

-6-

Protection

1. Galvanic isolation between IN... and COM... contacts and the rest of the system (min. 2.5 kV)
2. No galvanic isolation between power supply and RS-485 lines.
3.Overcurrent protection of power supply inputs and communication inputs (up to a maximum of $60 \mathrm{~V} D$) with automatic return feature.

Please note!
External control voltage is needed in each case to trigger input. If the module power supply is used to this end, it results in the loss of galvanic separation between control inputs, power supply and communication

Technical data

supply voltage	$9 \div 30 \mathrm{VDC}$
number of LI/DI inputs	4
counting input voltage	$6 \div 30 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
max. counting frequency	100 Hz
max. pulses number	$2 \uparrow 32$ (4.294.967.295)
circuit input impedance	$\geq 10 \mathrm{k} \Omega$
port	RS-485
communication protocol	Modbus RTU
operation mode	SLAVE
communication parameters	
rate - to set	$1200 \div 115200 \mathrm{bit} / \mathrm{s}$
data bits	8
stop bits	1/1.5 / 2
parity bits	EVEN / ODD / NONE
address	$1 \div 247$
power consumption	0,1W
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	2,5mm ${ }^{2}$ screw terminals
tightening torque	0,4Nm
dimensions	1 module (18 mm)
mounting	on TH-35 rail
ingress protection	IP20

