ANALOG INPUT

Do not dispose of this device in the trash along with other wastel According
to the Law on Waste, electro coming from households free of charge and can to the Law on Waste, electro coming from housenolas free of harde and can
give any amount to up to that end point of collection, as well as to store the
occasion of the purchase of new equiment give any amount to up to that end point of collection, as well as to store
ocasion of the purchase of new equipment (in accordance with the principle
of old-for-new, reagardless of brand). Flectro thrown in the trash or aband of old-for-new, regardless of brand). Electro thrown in the trash
in nature, pose a threat to the environment and human health.

Purpose

MR-Al-1 module serves as an external analog input device extending PLCs or other devices in which data exchange is via the RS-485 according to the MODBUS RTU protocol.

Functioning

The module has 4 universal analog inputs. Input type compatible $0-10 \mathrm{~V}$ (voltage U) or $4-20 \mathrm{~mA}$ (current I) is determined using internal jumpers. The module measures the value of input current and voltage on all inputs regardless of the hardware configurations of input types (location of jumpers). However, they will be properly conigurations of vinputypes (location of jumpers). How
Reading values of the input currents or voltages and setting communication parameters is realized through the RS-485 port using MODBUS RTU communication protocol.
Switching voltage is indicated by a green LED U. Correct data exchange between the module and the second device unit is indicated by a yellow LED TX.

$$
-1 \text { - }
$$

Registers
Communication parameters

adress	description	code	type	atr.
0	read actual base sdress	03	int	read
0	save a new base adress: $1 \div 238$	06,16	int	write

Module can accept network addresses in the range $1 \div 247$ The network address o the module is set in a complex way: using the MODBUS protocol to set the base the module is set in a complex way: using the MODBUS protocol to set the base
address, the number in the range 1 to 238 , and a multi-position switch to se address, the number in the range 1 to 238 , and a multi-position switch to se address residual,
determines the network address ($\mathrm{eg}, 1+6=7,70+3=73,238+9=247$).

1	read a speed of transmission	03	int	read
1	save a new speed of transmission	06,16	int	write

The speed value [bits/sec] is given in the form of an integer divided by 100 , for example, $9600 \mathrm{bit} / \mathrm{sec}$ write in figures $96 ; 115200 \mathrm{bit} / \mathrm{sec}$ write in figures 1152

2	read of actual parity value	03	int	read	
2	save a new parity value	06,16	int	write	
Parity adopt appropriate meanings: NONE - 0 ; EVEN - 1, ODD -2					
3	read of actual number of stop bits	03	int	read	
3	save the number of stop bits	06,16	int	write	

Number of stop bits accepts the importance of 1 or 2

INPUT parameters				
adress	description	code	type	atr.
$1000 \div$ 1003	values of input currents Al $1 \div 4$	04	int	read
$1004 \div$ 1007	values of input voltages AI $1 \div 4$	04	int	read

The current value is presented in the form of the total number of positive times 0.01 mA (eg registry values 103 corresponds to current of 1.03 mA). The voltage value is presented in the form of the total number of times the 0.01 V positive (eg the registry value 456 corresponds to the voltage 4.56 V).

Parameters of MODBUS RTU protocol

Communication parameters	
Protocol	MODBUSRTU
Work mode	SLAVE
Port settings (factory settings)	Bit numbers on sec: $1200 / 2400 / 4800 / \underline{9600}$ / 19200 / 3840 / $57600 / 115200$ Data bits: 8 Parity: NONE/EVEN/ODD Start bits: 1 Stop bits: 1/ $\underline{2}$
Range of network addresses (factory settings)	1 247 (90)
Range of base addresses	$1 \div 238$
Range of residual addresses (switch code)	$0 \div 9$
Command codes	3: Read value of outputs registry (0×03-Read holding Register) 4: read all or some records of input values (0×04 - Read Input Register) 6: The setting of a single output (0×06 - Write Single Register) 16: The setting of multiple outputs (0×10 - Write Multiple Registers) 17: Read ID (0x11-Report Slave ID)
The maximum frequency of queries	15 Hz

In response to the command "odzczyt ID" (code 17), we obtain a packet o information about the module: in the "Slave ID" code $0 \times E C$; in the "Run Status Indicator" code OxFF; in the "Additional Data" text "Al-1Mv1.2"

Setting the Network Address

Module can accept network addresses in the range $1 \div 247$. The network addres of the module is set in a complex way: using the MODBUS protocol to set the base address, the number in the range 1 to 238 , and a multi-position switch to set address residual, ie the number from 0 to 9 th The sum of these two values determines the network address (eg, $1+6=7,70+3=73,238+9=247$). Multiposition code switch is located under the front elevation. Cladding removed using flat-head screwdriver 3 mm elevation gently undermining hooks on the sides of the enclosure. 3 mm flat screwdriver to switch the rotary switch to the desired number, as a sub-address (range 0 to 9). Set a new module address is the sum of the values and partial base address, after setting the front elevation set up with special attention to the proper fitting of LEDs in the holes

Configuration of inputs
Each of the four to enter the module can be configured as a current or voltage. For this purpose you should make the internal jumper settings on the connector configuration of the module. In order to do so, remove the front façade with a flat screwdriver 3 mm tort challenging elevation hooks on the sides of the enclosure. Then pull out the rail clips from the guides (inside), then gently spread the housin halves. Connector configuration is on the vertical board between two horizontal.

Make setup of the jumpers accordance to the table below
Hardware configuration type of inputs

input	type I	type U
AI1	$2-4$	$4-6$
AI2	$1-3$	$3-5$
Al3	$8-10$	$10-12$
AI4	$7-9$	$9-11$

Assembly
General assumptions:
*Recommend the use of filters and surge suppression (eg, OP-230 F\&F).
Recommended use of shielded twisted pair signal cables for connecting the module to another device.

* Communication lines must be completed by termination module LT-04 (F\&F).
*When using shielded cables grounded screens performed only on one side and as close to the device.
Do not lay signal cables in parallel in close proximity to the line of high and medium voltage.

Inputs AI

A schematic diagram of various types of analog converters

* Do not install the module in close proximity to high power electrical loads, electromagnetic measurement devices, devices with phase power regulation, and other devices that may introduce noise.

Installatio

1. Make a hardware configuration according to the type wejśćmodułu transmitte connected to the analog input (U/I).
2. Set the address and communication parameters of module.
3. Take off the power.
4. Put the module on the rail
5. Power supply of module connect to joints 10-12 accordance to mark
6. Signal output 1-3 (port Rs485) connect to output of device type MASTER.
7. To selected inputs AI connect nalog converters accordance to theirs type (U/I).

Reset communication settings
Under cover is available code switch.

1. Take OFF the power.
2. Set "9" onthe switch
3. Set on the switc
4. Take ON the power and within 3 sec switch to " 1 ".

-6-

Input/output description
1-3
4/6/7/9
2/5/8
10-12
input signal Al.

$$
\begin{array}{llll}
\begin{array}{llll}
\text { Input signalal. } \\
\text { galvanic connected to } p .10 & 1 & 2 & 3 \\
\text { supply of relay }
\end{array} & &
\end{array}
$$

supply of relay

$10 \underset{+}{\square}+$

RS-485 port is not galvanically isolated from power supply module.

TECHNICAL DATA

supply	
max. current consumption	
number inputs	
type of inputs/range	$9 \div 30 \mathrm{VDC}$
\quad current	30 mA
\quad voltage	4
input resistance	$0 \div 20 \mathrm{~mA}$
\quad current	$0 \div 10 \mathrm{~V}$
voltage	
\quad error precision	$110 \mathrm{k} \Omega$
port	47Ω
communication protocol	0.5%
working temperature	$\mathrm{RS}-485$
storage temperature	MODBUS RTU
relative humidity	$-40^{\circ} \mathrm{C} \div 50^{\circ} \mathrm{C}$
connection	$-40^{\circ} \mathrm{C} \div 70^{\circ} \mathrm{C}$
torque	85% to $30^{\circ} \mathrm{C}$
dimensions	$2.5 \mathrm{~mm}^{2}$ screw terminals
protection level	0.4 Nm
	1 module $(18 \mathrm{~mm})$

