

ATEX

SBEx-2 BINARY SEPARATOR

1 OR 2 CHANNELS IN ONE HOUSING.

- accompanying device of group I of category (M1), group II and III category (1),
- two channels in one rail housing (TS35, width 22.5 mm),
- level "ia" intrinsically safe input circuits - compliance with ATEX,
- EC-Type Examination Certificate: KDB 04ATEX061

FEATURE: I (M1) [Ex ia] I; II (1) G [Ex ia] IIC; II (1) D [Ex ia] IIIC
Protection level IP20 Operating temperature range -25..+70 ${ }^{\circ} \mathrm{C}$

- inputs for proximity sensors, contacts, voltage, current and NAMUR signals,
- short-circuit or open circuit signaling of the inductive proximity sensor connection,
- relay, opto-relay or open-collector output,
- operate phase adjustable with on-housing switches,
- inputs, outputs and power supply mutually galvanically separated.
- Intrinsically safe input circuit can operate with any device, with intrinsically safe circuit of protection level ia or ib, that is installed in explosive hazardous area of group I and zones " $0,1,2,20,21,22$ " of group II of any mixture, including e.g. proximity sensor, turbine flow sensor, contact, OC etc.
- Output circuits, signaling circuit and supply circuit can operate with any non-intrinsically safe devices circuits of voltage Um=253V e.g. supplied from the 230 Vac network.
- Separator can be installed in a room that is safe in terms of explosion and protected against access of persons not trained in maintenance and operating of the separator.
- Separator installed in a hazardous area can have a flameproof housing. Separator can be removed from the housing shortly after power in group I is turned off, because it does not contain any energy storage elements and do not become too hot. A 10 minutes delay is necessary in group II and III (gases and dusts).

Note: 1. While the power is turned off all outputs are logically , 0 " - relay contacts are opened.
2. To ensure a good operation of the "ALARM" signalization in default NAMUR realization, the input of unused measurement channel should be shorted by resistor $\mathrm{R}: ~ 6 \mathrm{k} \Omega>\mathrm{R}>4 \mathrm{k} \Omega$.

Order example:

Binary separator, two channels, channel 1 - standard current input for proximity sensor $1.2 / 2.1 \mathrm{~mA}$, channel 2 - voltage input of 2.5 V switching level and 0.5 V hysteresis width:
SBEx-2/14mA/I-S/U-(2.5; 0.5V)/; Channel1 and ALARM-PK; Channel2-OPTO-B

Application:

Separator can be used to transfer the voltage from contacts or open-collector transistor or any signal to the galvanically separated side. It is adapted to operate with NAMUR type proximity sensors that switch the current between $1.2 / 2.1 \mathrm{~mA}$ (DIN 19234).
Separator has also two types of inputs:
U type - voltage input (e.g. 0/24 V),
I type - current input, e.g. signal from proximity sensor, contact or transistor.
There is a possibility to adjust the input switching voltage or input switching current and hysteresis width. These parameters should be given in the ordering code. Shaping circuit with hysteresis allows you to work with the fast and slow rising signal slopes.

Ordering code:

SBEx-1 or 2--SBEx-1/5 3 mA SBEx $1 / 14 \mathrm{~mA}$

SBEx-1/21mA
SBEx-1/30mA
SBEx-1/47mA
Channel 1 - --
S - --------
(X; H) --

Tor 2
S-
(X; H)- input parameters X - switching level, H - hysteresis width
Desired voltage value U on contacts " 1 " and " 5 " from range $0 \div 10,5 \mathrm{~V}$ should be described.
Output type should be described as well: relays $\Rightarrow \mathrm{PK}$; optorelays \Rightarrow OPTO-A or OPTO-B.

The voltage between contacts $1-4$ and between 5-8 is typically $8.2 \mathrm{~V}(\mathbf{0} \div \mathbf{1 0 , 5} \mathrm{V}$ after agreement).
In the case, when the separator is driver from an "opencollector" transistor, contact 1 and 5 should be connected with the collector.
Any converter's output, that measures a big variation of some physical value, can be a source of the current signal. Voltage impulses can be provided e.g. by the generator. Depending on the user needs, the switching thresholds and hysteresis should be specified in the order separately for each channel.
Exceeding the input signal value of
(switching level + hysteresis)
results in shorting the output relay contact and turning on the green LED. If the red "ALARM" LED turns on, it means the connection line is broken (shorted or opened) relay contact will be shorted in such case. User can reverse the phase of operation of all relays and LEDs by using the switches on the side wall of the housing (switcher 1 - ALARM; switcher 2 - TOR 1; switcher 3 - TOR 2).
Separator signalizes if connection lines are opened or shorted in cooperation with NAMUR type sensors e.g. two-wire inductive proximity sensors of type PCIN by SELS. In such case the red "ALARM" LED is turned on and the contacts connected to terminals " 13 ", " 14 " become shorted (inner relay signalizing a failure). It is a common signalization for both channels - the user should check, which channel is concerned by the alarm. By using the switch that is placed on the side wall of the housing of the transducer, the phase of the relay and the red LED trigger can be changed.
"ALARM" LED is always turned on (green or red) and it means that there is 24 Vdc power supply connected to the separator.
Note: When working with the contact or transistor, a $20 \div 25 \mathrm{k} \Omega$ resistor should be mounted in series, and $0,5 \div 1 \mathrm{k} \Omega$ resistor in parallel, to the sensor terminals (in hazardous area), to make the "sensor channel short/open signalization" work properly (terminals $1-2$, channel $1 \Rightarrow$ check the figure on page no. 1).

Technical specification: One or two channels with the following parameters.
Input signals type - Proximity sensor, contact or transistor switch,

- current,
- voltage.

Default switching thresholds:

- current input and contact
- $1.45 / 1.85 \mathrm{~mA}$
- voltage input

Maximal input voltage

- $4.0 / 5.6 \mathrm{~V}$
- U < 30V

Maximal input current
Input resistance - current

- voltage

Open signalization threshold in inductive sensor circuit
Short signalization threshold in
inductive sensor circuit
Sensor's supply voltage
Input - relay contact

- switching time
- switching frequency
- mechanical durability
- switched power
- minimal switched signal

After agreement - OC output
Separator supply voltage

- I < 100 mA
- typically 500Ω
- $75 \mathrm{k} \Omega$
- opened I $<0.15 \mathrm{~mA}$ not opened $\mathrm{I}>0.35 \mathrm{~mA}$
- shorted R < 500Ω not shorted $\mathrm{R}>700 \Omega$
- typically $8.2 \mathrm{~V} \pm 5 \%$ after agreement $0 \div 10,5 \mathrm{~V}$
- typically 10 ms
- $10 \mathrm{~Hz}(\max 20 \mathrm{~Hz})$
- 10^{7} (for $1 \mathrm{~Hz} \Rightarrow 4$ months)
- max $250 \mathrm{Vac} / 0.3 \mathrm{~A}$ $\max 30 \mathrm{Vdc} / 1 \mathrm{~A}$
- $\mathrm{U}>10 \mathrm{mV}, \mathrm{I}>10 \mu \mathrm{~A}$
- $350 \mathrm{~V}, 0,1 \mathrm{~A}, 800 \mathrm{~Hz}, \mathrm{r}=30 \Omega$
- $20 \div 27 \mathrm{~V}$ DC / max 55 mA

Note: If supply voltage exceeds 28 V the fuse of the protection barrier may be burnt - repair only by the manufacturer.

Electrical isolation
Isolation test voltage

- all circuits are mutually separated
- $1,5 \mathrm{kV}$

Standard S parameters:

Current input I - $1.2 / 2.1 \mathrm{~mA}$ - separator is then adjusted to work with NAMUR proximity sensor e.g. type PCIN by SELS

For contact
Voltage input U

- $\mathrm{R}>10 \mathrm{k} \Omega / \mathrm{R}<2 \mathrm{k} \Omega$
- $\mathrm{U}<4.0 \mathrm{~V} / \mathrm{U}>5.6 \mathrm{~V}$

Separator can be made in wall housing with $220 \mathrm{~V} / 50 \mathrm{~Hz}$ power supply.
LABOR-ASTER www.labor-automatyka.pl, biuro@laboraster.pl
tel. +48 226107180 , 61089 45, fax +48 $226108948 ; ~ 04-218$ Warsaw, ul. Czechowicka 19

1. Safety parameters given separately for terminals "1-2;1-4; 5-6; 5-8" and separately for terminals

 "2-4; 3-4; 6-8; 7-8".Terminals " $1-2,1-4 "$ in channel 1 (similar to terminals " $5-6,5-8 "$ in channel 2) and set of terminals " $2-4,3-4 "$ in channel 1 (similar to terminals " $6-8,7-8$ " in channel 2) are separate, galvanically connected with each other, intrinsically safe circuits. One multi-wire type A or B IEC 60079-14 cable or separate cables may be used to connect both circuits simultaneously.
a) Intrinsically safe input supplying circuit: "channel 1 " - terminals "1-2", "1-3", "1-4"
and "channel 2 " - terminals "5-6", "5-7", "5-8" with "ia" protection level:
Terminals " $1-2$ " or "1-4" are used in channel 1 (respectively terminals " $5-6$ " or " $5-8$ " in channel 2).

Clustered parameters Co, Lo.

Clustered values Co, Lo and connection cable parameters L/R should be taken according to the table below. Data referred to clustered values Co, Lo can also be applied to cables.

Version	$\begin{gathered} \text { Uo } \\ {[\mathbf{V}]} \end{gathered}$	$\begin{gathered} \text { Io } \\ {[\mathrm{mA}]} \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Po } \\ {[\mathrm{mW}]} \end{gathered}\right.$	$\mathbf{L} / \mathbf{R}[\mathrm{mH} / \Omega]$			Lo [mH]			Co [$\mu \mathrm{F}$]		
				I and IIA	IIB	IIC	I and IIA	IIB	IIC	I and IIA	IIB	IIC
SBEx-2/5,3mA	$0 \div 10,5$	5,3	15,8	218	9	2,2	50	20	5	3,8	2,7	0,65
SBEx-2/14mA		13,9	41,6	6,5	3,2	0,81				3,3	2,5	0,61
SBEx-2/21mA		20,4	61,1	4,5	2,2	0,56				3,1	2,5	0,58
SBEx-2/30mA		29,4	88,1	3,1	1,5	0,39				2,9	2,3	0,55
SBEx-2/47mA		46,8	140,4	2,0	1,0	0,25	20			3,2	2,1	0,5

Circuits characteristic is trapezoidal.

Distributed parameters Lo, Co.

Distributed values Co, Lo for connection cable should be taken according to the table beside
Connection cable parameters L/R can be taken from the table above.

Version	Lo [mH]			Co [$\mu \mathrm{F}$]		
	I and IIA	IIB	IIC	I and IIA	IIB	IIC
SBEx-2/5,3mA	100	100	100	75	16,8	2,41
SBEx-2/14mA						
SBEx-2/21mA						
SBEx-2/30mA			52			
SBEx-2/47mA		87	20			

b) Passive measurement inputs.

- Intrinsically safe input circuit: "channel 1" - terminals "2-4", "3-4" and "channel2" - terminals "6-8", "7-8" with "ia" protection level. In channel 1 are used terminals " $2-4$ " or "3-4" (similar in channel 2 terminals " $6-8$ " or "7-8").

Values Lo, Co for clustered and distributed parameters.

Clustered values Co, Lo and connection cable parameters L/R should be taken according to the table below. Data referred to clustered values Co, Lo can also be applied to cables.

Version	$\begin{aligned} & \text { Uo } \\ & {[\mathbf{V}]} \end{aligned}$	$\begin{gathered} \text { Io } \\ {[\mathbf{m A}]} \end{gathered}$	$\begin{aligned} & \text { Po } \\ & {[\mathbf{m W}]} \end{aligned}$	$\mathbf{L} / \mathbf{R}[\mathrm{mH} / \Omega]$			Lo [mH]			Co [$\mu \mathrm{F}$]		
				I and IIA	IIB	IIC	I and IIA	IIB	IIC	I and IIA	IIB	IIC
SBEx-2/5,3mA	6,51	0,32	0,97	292	146	36	100	50	20	9,1	6,2	1,5
SBEx-2/14mA												
SBEx-2/21mA												
SBEx-2/30mA												
SBEx-2/47mA												

Circuits characteristic is linear.

- Intrinsically safe input circuits parameters: "channel1" - terminals "2,-4", "3-4"
and "channel2" - terminals "6-8", "7-8" with "ia" protection level: $\mathrm{Ui}=30 \mathrm{~V}, \mathrm{Ii}=$ any, $\mathrm{Pi}=$ any $, \mathrm{Li} \cong \mathbf{0}, \mathrm{Ci} \cong 0$.

2. Safety parameters given together for terminals " $1+2+3$ and 4 " and " $5+6+7$ and 8 ".

One multi-wire type A or B IEC 60079-14 cable or separate cables may be used to connect terminals „1, 2, 3, 4" in channel 1 and set of terminals ,,5, $6,7,8 "$ in channel 2.
a) Intrinsically safe input circuits: "channel1" - terminals " $1,2,3,4$ " and "channel2" - terminals " $5,6,7,8$ " with "ia" protection level.

Clustered parameters Lo, Co.

Clustered values Co, Lo and connection cable parameters L/R should be taken according to the table below. Data referred to clustered values Co, Lo can also be applied to cables.

				L/R	[mH			[mH			$[\mu \mathrm{F}$	
Version	$[\mathbf{V}]$	$[\mathrm{mA}]$	$[\mathbf{m W}]$	I and IIA	IIB	IIC	I and IIA	IIB	IIC	I and IIA	IIB	IIC
SBEx-2/5,3mA	6,5 $\div 10,5$	5,91	17,74	16	8	2	50	20	5	3,7	2,8	0,64
SBEx-2/14mA		14,5	43,6	6,5	3,2	0,81				3,3	2,5	0,61
SBEx-2/21mA		21,0	63,1	4,5	2,2	0,56				3,1		0,58
SBEx-2/30mA		30,4	90,1	3,1	1,5	0,39				2,9	2,3	0,55
SBEx-2/47mA		47,4	142,3	2,0	1,0	0,25	20			3,2	2,1	0,5

Circuits characteristic is trapezoidal.
Data refer to clustered values Lo and Co can also be applied to cables.

Distributed parameters Lo, Co.

Distributed values Co, Lo for connection cable should be taken according to the table beside.
Connection cable parameters L/R can be
taken from the table above.

Version	Lo [mH]			Co [$\mu \mathrm{F}$]		
	I and IIA	IIB	IIC	I and IIA	IIB	IIC
SBEx-2/5,3mA	100	100	100	75	16,8	2,41
SBEx-2/14mA						
SBEx-2/21mA						
SBEx-2/30mA			49			
SBEx-2/47mA		85	20			
Circuits charact	stic is	pezoi				

b) Intrinsically safe input circuits parameters: "channel1" - terminals "2,-4", "3-4" and "channel2" - terminals " $6-8$ ", " $7-8$ " with "ia" protection level: $\mathrm{Ui}=30 \mathrm{~V}, \mathrm{Ii}=\mathrm{any}, \mathrm{Pi}=a n y, \mathrm{Li} \cong 0, \mathrm{Ci} \cong 0$.

3. Safety parameters when both intrinsically safe circuits are serially galvanically connected given for terminals " $1+2+3+4+5+6+7+8$ ".

Terminals " $1,2,3,4,5,6,7,8$ " can be connected with one multi-wire.
a) Intrinsically safe, connected with each other serially both input circuits: "channel1" - terminals " $1,2,3$ and 4 " and "channel2" - terminals " $5,6,7$ and 8 " with " $i a$ " protection level.

Clustered parameters Lo, Co.

Clustered values Co, Lo and connection cable parameters L/R should be taken according to the table below. Data referred to clustered values Co, Lo can also be applied to cables.

Version	$\begin{gathered} \text { Uo } \\ {[\mathbf{V}]} \end{gathered}$	$\begin{gathered} \text { Io } \\ {[\mathbf{m A}]} \end{gathered}$	$\begin{gathered} \text { Po } \\ {[\mathbf{m W}]} \end{gathered}$	L/R [$\mathrm{mH} / \mathrm{\Omega}$]			Lo [mH]			Co [$\mu \mathrm{F}$]		
				I and IIA	IIB	IIC	I and IIA	IIB	IIC	I and IIA	IIB	IIC
SBEx-2/5,3mA	$13 \div 21$	5,91	35,5	8	4	1	10	10	2	1,1	0,74	0,14
SBEx-2/14mA		14,5	87,2	3,2	1,6	0,4				1,0	0,91	0,13
SBEx-2/21mA		21,0	126,2	2,2	1,1	0,28		5			0,79	0,13
SBEx-2/30mA		30,4	180,2	1,5	0,79	0,19			10	0,97	0,77	0,12
SBEx-2/47mA		47,4	284,6	0,97	0,48	0,12			5	0,92	0,74	0,11

Circuits characteristic is trapezoidal.
Distributed parameters Lo, Co.

Distributed values Co, Lo for connection cable should be taken according to the table beside. Connection cable parameters L/R can be taken from the table above.	Version	Lo [mH]			Co [$\mu \mathrm{F}$]		
		I and IIA	IIB	IIC	I and IIA	IIB	IIC
	SBEx-2/5,3mA	100	100		4,78	$\begin{gathered} 1,2 \\ 7 \end{gathered}$	0,188
	SBEx-2/14mA			100			
	SBEx-2/21mA			89			
	SBEx-2/30mA			39			
	SBEx-2/47mA		72	14			

LABOR-ASTER www.labor-automatyka.pl , biuro@laboraster.pl
tel. +48 2261071 80, 61089 45, fax +48 2261089 48; 04-218 Warsaw, ul. Czechowicka 19
b) Intrinsically safe input circuits parameters: "channel1" - terminals "2,-4", "3-4" and "channel 2 " - terminals " $6-8$ ", " $7-8$ " with " $i a$ " protection level: $\mathrm{Ui}=30 \mathrm{~V}, \mathrm{Ii}=a n y, \mathrm{Pi}=a n y, L i \cong 0, \mathrm{Ci} \cong 0$.

4. Safety parameters when both intrinsically safe circuits are parallelly galvanically connected given for terminals " $1+2+3+4+5+6+7+8$ ".

Terminals " $1,2,3,4,5,6,7,8$ " can be connected with one multi-wire.
a) Intrinsically safe, connected with each other parallely both input circuits: "channel1" - terminals "1, 2, 3 and 4" and "channel2" - terminals "5, 6, 7 and 8 " with "ia" protection level.

Clustered parameters Lo, Co.

Clustered values Co, Lo and connection cable parameters L/R should be taken according to the table below. Data referred to clustered values Co, Lo can also be applied to cables.

Version	$\begin{gathered} \text { Uo } \\ {[\mathbf{V}]} \end{gathered}$	$\begin{gathered} \text { Io } \\ {[\mathbf{m A}]} \end{gathered}$	$\begin{gathered} \text { Po } \\ {[\mathbf{m W}]} \end{gathered}$	$\mathbf{L} / \mathbf{R}[\mathrm{mH} / \Omega]$			Lo [mH]			Co [$\mu \mathrm{F}$]		
				I and IIA	IIB	IIC	$\begin{gathered} \text { I and } \\ \text { IIA } \\ \hline \end{gathered}$	IIB	IIC	$\begin{gathered} \text { I and } \\ \text { IIA } \\ \hline \end{gathered}$	IIB	IIC
SBEx-2/5,3mA	6,5 $\div 10,5$	11,82	35,5	8	4	1	20	20	5	3,8	2,6	0,62
SBEx-2/14mA		29	87,2	3,2	1,6	0,4				3,5	2,4	0,56
SBEx-2/21mA		42	126,2	2,2	1,1	0,28				3,3	2,2	0,52
SBEx-2/30mA		60,8	180,2	1,5	0,79	0,19				2,9	1,9	0,45
SBEx-2/47mA		94,8	284,6	0,97	0,48	0,12			4,8	2,4	1,4	0,33

Circuits characteristic is trapezoidal.
Distributed parameters Lo, Co.

Distributed values Co , Lo for connection cable should be taken according to the table beside.
Connection cable parameters L/R can be taken from the table above.

Version	Lo [mH]			Co [$\mu \mathrm{F}$]		
	I and IIA	IIB	IIC	I and IIA	IIB	IIC
SBEx-2/5,3mA	100	100	100	75	16,8	2,41
SBEx-2/14mA			54			
SBEx-2/21mA			25			
SBEx-2/30mA	78	51	12			
SBEx-2/47mA	32	21	4,8			
Circuits characte	ic is tr	ezoi				

b) Intrinsically safe input circuits parameters: "channel1" - terminals " $2,-4$ ", "3-4"
and "channel2" - terminals " $6-8$ ", " $7-8$ " with " $i a "$ protection level:
$\mathrm{Ui}=30 \mathrm{~V}, \mathrm{Ii}=a n y, \mathrm{Pi}=a n y, \mathrm{Li} \cong 0, \mathrm{Ci} \cong 0$.

5) Non-intrinsically safe circuits parameters:

"channel1 output" - terminals "9-10"; "channel2 output" - terminals "11-12"; "alarm" - terminals "13-14" and "supply 24V" - terminals "15-16": Um=253V

Application condition:
The maximum values of capacitance and inductance attached to the intrinsically safe terminals $1,2,3,4,5,6,7,8$ should be chosen taking safety parameters of the attached circuits (given in terms of equipment that will be connected to the input separator SBEx-2) into account, but may not exceed the values given in the tables above.
Separator's housing is made of self-extinguishing plastic (poliamid PA 6.6) and can be mounted on TS35 rail. The housing and terminals are IP20 made.
Outer connections should be connected using cables with diameter $0,5 \div 2.5 \mathrm{~mm}^{2}$.
ATEX compliance - directive 94/9/WE: PN-EN 60079-0:2009, PN-EN 60079-11:2012, PN-EN 50303:2004.
Operation condition:
Ambient temperature - for storage

- $-30 \div+70^{\circ} \mathrm{C}$

Ambient temperature - operation

- $-25 \div+70^{\circ} \mathrm{C}$

Relative humidity

- $\quad \max 90 \%$

Ambient atmosphere

- no dust and aggressive gases

Working position

- any

