CURRENT STRENGTH TRANSDUCER
MB-3I-1 5A with MODBUS RTU output

Do not dispose of this device in the trash along with other waste! According
Do not dispose of this device in the trash along with other waste! According
to the Law on Waste, electro coming from households free of charge and can
give any amount to uuto to that end point of oclelection, as well as to tore the
occasion of the purchase of new equipment tin accordance with the principle occasion of the purchase of new equipment (in accordance with the pinicipe
of old-for-new, regardless of brand). Electro thrown in the trash or abandoned in nature, pose a threat to the environment and human health.

Purpose

MB-31-1 transducer is designed to measure the strength of alternating current or direct current and to transmit the data via RS-485 port using MODBUS RTU protocol.

Functioning

The module is designed to work with current transformer with 5 A secondary current.
The module continuously measures the current flowing through the measurement inputs. Readout of recorded current strength and setting of all communication parameters are carried out through RS-485 port using the MODBUS RTU communication protocol.
Power up is indicated by a green LED U light. Valid data exchange between the module and the second device is indicated by a yellow LED Tx light.
The transducer measures the effective value of TrueRMS current, which ensures high accuracy even with distorted flow.

Communication parameters of MODBUS RTU protocol

Protocol	MODBUS RTU
Operation mode	SLAVE
Port settings (factory settings)	```bits/s: 1200/2400/4800/9600/19200/38400 /57600/115200 Data bits: 8 Parity: NONE/EVEN / ODD Start bits: 1 Stop bits: \(1 / \underline{2}\)```
Range of network addresses (factory settings)	$1 \div 247$ (20)
Range of base addresses	$1 \div 238$
Range of residual addresses (code switch)	0%
Command codes	3: Readout of outputs registers values (0×03-Read Holding Register) 4: Readout of all or a couple of input values registers (0×04-Read Input Register) 6 : Single output value setting (0×06) 16: Setting values of multiple outputs (0×10 - Write Multiple Registers) 17: ID readout (0x11-ReportSlave ID)
Maximum frequency of queries (max)	15 Hz

Network address settings

The module can receive network addresses in the range $1 \div 247$. The network address of the module is set in a combined way: using the MODBUS protocol use sets the base address, which is a number between $1 \div 238$ and using a multi-positio switch he sets the residual address, which is a number between $0 \div 9$. The sum of these two values designate a network address (e.g. $1+6=7 ; 70+3=73 ; 238+9=247$). Multi-position code switch is located under the front casing. Removed the front casing with a housing. Wh (0). Whe hor is partial address (range $0 \div 9$). When the setting is done, reattach the front casing paying particular attention to correctly fit LEDs in to mounting holes.

Input parameters					
address	description	command	type	atr.	
1000	channel 1 (L1) current value	04	int	read	
1001	channel 2 (L2) current value	04	int	read	
1002	channel 3 (L3) current value	04	int	read	

Value of measured current is stored in the registry as an integer of 0.1 multiplicatio factor (e.g. the registry value 43 corresponds to the voltage of $4,3 \mathrm{~A}$).
In response to the "read ID" command (code 17), we get a packet of information In response to the "read ID cone "Slave ID"; code OxFF in the "Run Indicator Status field; text "PU-1Mv1.2" in the "Additional Data" field.

Description IN/OUT

L1 $\quad 1$ \qquad L1'
L2 $\quad 4$ \qquad
L3 $\quad 7$ \qquad L2'

1-3 L1 current circuit
4-6 L2 current circuit
7-9 L3 current circuit
10-12 module power supply
11-11' RS-485 serial port

Measurement channel is galvanically separated from the converter power input and the RS-485 communication port.
RS-485 is not separated from the power supply.

Installation

General guidelines:

* Use of surge protectors and interference filters is recommended (e.g. OP-230 F\&F).
* Use of shielded twisted wires is recommended for connecting the unit to another device.
* If using shielded cables, ground the shield on one side only and as close to the device as possible.
* The ends of the signal line must be completed with termination modules LT-04 ($F \& F$).
* Do not run signal cables parallel and in direct proximity to high- and medium-
voltage line.
* Do not install the unit in direct proximity to high power receivers, electromagnetic measuring devices, appliances with phase power adjustment and any other devices that can create interferences.
-5 -

Reset communication settings

Under cover is available code switch.

1. Take OFF the power.
2. Remove front panel.
3. Set " 9 " on the switch.
4. Take ON the power and within 3 sec switch to " 1 ".

Installation:

1. Set the network address and the communication parameters..
2. Disconnect the power.
3. Connect the unit power supply to terminals 10-12 as indicated
4. Connect signal output 11-11' (RS-485 port) to the MASTER output of another 5. Conn
device.
5. Connect the measurement circuit to the corresponding inputs of the transduce (as in a given example).

Indirect measurement
of the three-phase current network using the current transformers. -6-

Technical data

supply voltage	$9 \div 30 \mathrm{~V} \mathrm{DC}$
maximum power consumption	50 mA
TrueRMS measurement range	$0 \div 5 \mathrm{~A} \mathrm{AC} / 285 \mathrm{~V} \mathrm{AC}$
max. load current of measurement input	10 A AC
measurement error	$\pm 0.5 \%$
register readout precision	0.1 A
sampling rate	10 Hz
IN->OUT breakdown voltage	$>2.1 \mathrm{kV}$
port	$\mathrm{RS}-485$
communication protocol	Modbus RTU
operating mode	SLAVE
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
relative humidity	85% for $+30^{\circ} \mathrm{C}$
terminal	$2,5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	1 module $(18 \mathrm{~mm})$
protection level	IP 20

