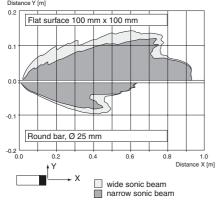


CE

Model Number

UB500-F42-E5-V15


Single head system

Features

- Switch output
- Extremely small unusable area
- **TEACH-IN**
- Interference suppression (adjustable width of sound cone in close range)
- **Temperature compensation**
- **Synchronization options**
- NO/NC selectable

Curves

Characteristic response curve

Technical data

General specification	ons
-----------------------	-----

Sensing range 30 ... 500 mm 50 ... 500 mm Adjustment range 0 ... 30 mm Unusable area Standard target plate 100 mm x 100 mm approx. 390 kHz Transducer frequency Response delay approx. 50 ms

Indicators/operating means

LED green permanently green: Power on LED yellow permanent: switching state switch output flashing: program function

LED red normal operation: "fault" program function: no object detected

Electrical specifications

Operating voltage U_B 10 ... 30 V DC , ripple 10 %SS

No-load supply current I₀ ≤ 50 mA

Input/output

bi-directional Synchronization 0 level -U_{B...+1} V 1 level: +4 V...+U_B

input impedance: > 12 KOhm

synchronization pulse: ≥ 100 µs, synchronization interpulse

Synchronization frequency Common mode operation

≤ 95/n Hz, n = number of sensors Multiplex operation

Output

Output type 1 switch output E5, pnp NO/NC, programmable

< 95 Hz

Rated operational current I_e 200 mA, short-circuit/overload protected

Switch point A1: 50 mm , Switch point A2: 500 mm , wide Default setting

beam width ≤ 2.5 V

Voltage drop U_d Repeat accuracy ≤ 0.5 % of switching point

Switching frequency f ≤ 8 Hz

Range hysteresis H 1 % of the set operating distance

Temperature influence ± 1 % of full-scale value

Ambient conditions

-25 ... 70 °C (248 ... 343 K) Ambient temperature

Storage temperature -40 ... 85 °C (233 ... 358 K)

Mechanical specifications

Protection degree IP54

Connection connector V15 (M12 x 1), 5 pin

Material

Housing

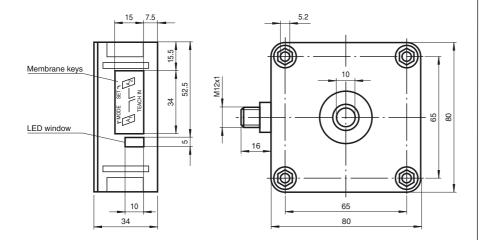
Transducer epoxy resin/hollow glass sphere mixture; foam

polyurethane, cover PBT

140 q Mass Compliance with standards and

directives

Standard conformity


Pepperl+Fuchs Group • Tel.: Germany +49 621 776-0 • USA +1 330 4253555 • Singapore +65 67799091 • Internet http://www.pepperl-fuchs.com

Standards FN 60947-5-2:2007 IEC 60947-5-2:2007

133975 ENG.xml Date of issue: 2009-10-22

Release date: 2009-10-22 13:23

Dimensions

Electrical Connection

Standard symbol/Connections:

Wire colors in accordance with EN 60947-5-2

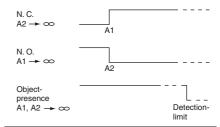
Pinout

Connector V15

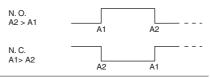
Functional Description

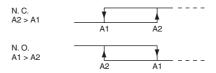
The sensor may be completely parameterised via two keys on the side panel of the housing. As a special feature provided by this sensor, the ultrasound beam width may be adapted to the environmental conditions at the place of operation of the sensor.

Specifying the switching points:


When specifying the switching points, the user determines at which points the switching output changes its state. The order of the switching points A1 > A2, or A1 < A2 also determines the direction of action (i.e. normally-closed/normally-open contact function).

Additional Information


Programmable operation modes


1. Switching point mode

2. Window mode

3. Hysteresis mode

Note:

→ ∞ means: cover transducer surface with your hand, while teaching the switching point.

If A1 = A2, the output works like A2 > A1

Accessories

MH 04-3505

Mounting aid

MHW 11

Mounting aid

V15-G-2M-PVC

Cable connector

V15-W-2M-PUR

Cable connector

Briefly pressing the A1 key

mode is exited.

The A2 switching point is specified via the A2 key, analogous to the description above.

Alternatively, the switching points may also be specified electrically via the learn input. To specify the A1 switching point, the learn input must be connected to

The sensor terminates the specification of the A1 switching point and saves it as a non-volatile value. The specified value is invalid if the object is uncertain (i.e. the red LED lights up at irregular intervals). The learn

 $-U_B$; to specify the A2 switching point, it must be connected to $+U_B$. Specified values are saved upon the disconnection from the learn input.

Switching points may only be specified directly after Power on. A time lock secures the adjusted switching points against unintended modification 5 minutes after the last keypress. To modify the switching points later, the user may specify the desired values only after a new Power On.

Proceed as follows to parameterise the output function and the ultrasound beam width:

Press the A1 key during Power on and hold down the key for another second to ensure that the sensor starts the two-step parameterisation of the operating modes.

Step 1, parameterisation of the output function

The output function parameterised last is displayed. All output functions available may be selected via consecutive, brief strokes of the A2 key. These strokes are visualised via short flashes of the green LED.

Operating mode	Flash sequence of the green LED	A2 key
1 switching point/ object detection	pause -	
Window function (default)	pause Dick	\
Hysteresis mode	pause pause	

Hold down the A1 key for 2 seconds to save the selected output mode, complete the parameterisation and ensure that the sensor returns to normal mode. Step 2 may be initiated by briefly pressing the A1 key (parameterisation of the ultrasound beam width).

Step 2, parameterisation of the ultrasound beam width

In the near range, via Step 2, the ultrasound beam width may be adapted to the requirements of the corresponding application. The beam width parameterised last is displayed first. Available beam width settings may be selected via consecutive, brief strokes of the A2 key. These strokes are visualised via the flash sequence of the red LED.

Beam width	Flash sequence of the red LED	A2 key
Small beam	pause ;	
Medium beam	pause Direction pause	
Large beam		

Hold down the A1 key for 2 seconds to save the selected beam shape, complete the parameterisation and ensure that the sensor returns to normal mode. Briefly press the A1 key to return to Step 1 (parameterisation of the output function).

If the parameterisation mode is not terminated within 5 minutes after last keypress (by holding down the A1 key for 2 seconds), the sensor aborts this mode without modifying the settings.

Synchronisation

The sensor has a synchronisation port to suppress mutual influencing. If this port has not been connected, the sensor works at an internally generated cycle rate. Several sensors may be synchronised via the following options.

External synchronisation:

The sensor may be synchronised via the external application of a square wave voltage. A synchronisation pulse on the synchronisation input initiates a measuring cycle. The pulse width must be greater than $100 \, \mu s$. The measuring cycle is started with the falling edge. A low level > 1 s or an open synchronisation input initiate the transition to normal sensor mode. A high level on the synchronisation input deactivates the sensor.

Two modes are possible:

- Several sensors are controlled via the same synchronisation signal. The sensors work in common mode.
- The synchronisation pulses are forwarded at cyclic intervals to respectively one single sensor. The sensors work in multiplex mode.

Self-synchronisation:

The synchronisation ports of up to 5 sensors suitable for self-synchronisation are connected to each other. These sensors work in multiplex mode after Power on. The On delay increases depending on the number of sensors to be synchronised. While the learn mode is active, no synchronisation is possible (and vice-versa). To specify the switching points, the sensors must be operated in non-synchronised mode.

Note:

If the synchronisation option is not used, the synchronisation input must be connected to ground (0V) or the sensor must be operated with a (4-pole) V1 connecting cable.